Background: Glutamate excitotoxicity might contribute to the pathophysiology of amyotrophic lateral sclerosis. In animal models, decreased excitatory aminoacid transporter 2 (EAAT2) overexpression delays disease onset and prolongs survival, and ceftriaxone increases EAAT2 activity. We aimed to assess the safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis in a combined phase 1, 2, and 3 clinical trial.

Methods: This three-stage randomised, double-blind, placebo-controlled study was done at 59 clinical sites in the USA and Canada between Sept 4, 2006, and July 30, 2012. Eligible adult patients had amyotrophic lateral sclerosis, a vital capacity of more than 60% of that predicted for age and height, and symptom duration of less than 3 years. In stages 1 (pharmacokinetics) and 2 (safety), participants were randomly allocated (2:1) to ceftriaxone (2 g or 4 g per day) or placebo. In stage 3 (efficacy), participants assigned to ceftriaxone in stage 2 received 4 g ceftriaxone, participants assigned to placebo in stage 2 received placebo, and new participants were randomly assigned (2:1) to 4 g ceftriaxone or placebo. Participants, family members, and site staff were masked to treatment assignment. Randomisation was done by a computerised randomisation sequence with permuted blocks of 3. Participants received 2 g ceftriaxone or placebo twice daily through a central venous catheter administered at home by a trained caregiver. To minimise biliary side-effects, participants assigned to ceftriaxone also received 300 mg ursodeoxycholic acid twice daily and those assigned to placebo received matched placebo capsules. The coprimary efficacy outcomes were survival and functional decline, measured as the slope of Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) scores. Analyses were by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00349622.

Findings: Stage 3 included 66 participants from stages 1 and 2 and 448 new participants. In total, 340 participants were randomly allocated to ceftriaxone and 173 to placebo. During stages 1 and 2, mean ALSFRS-R declined more slowly in participants who received 4 g ceftriaxone than in those on placebo (difference 0·51 units per month, 95% CI 0·02 to 1·00; p=0·0416), but in stage 3 functional decline between the treatment groups did not differ (0·09, -0·06 to 0·24; p=0·2370). No significant differences in survival between the groups were recorded in stage 3 (HR 0·90, 95% CI 0·71 to 1·15; p=0·4146). Gastrointestinal adverse events and hepatobiliary adverse events were more common in the ceftriaxone group than in the placebo group (gastrointestinal, 245 of 340 [72%] ceftriaxone vs 97 of 173 [56%] placebo, p=0·0004; hepatobiliary, 211 [62%] vs 19 [11%], p<0·0001). Significantly more participants who received ceftriaxone had serious hepatobiliary serious adverse events (41 participants [12%]) than did those who received placebo (0 participants).

Interpretation: Despite promising stage 2 data, stage 3 of this trial of ceftriaxone in amyotrophic lateral sclerosis did not show clinical efficacy. The adaptive design allowed for seamless transition from one phase to another, and central venous catheter use in the home setting was shown to be feasible.

Funding: National Institute of Neurological Disorders and Stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216315PMC
http://dx.doi.org/10.1016/S1474-4422(14)70222-4DOI Listing

Publication Analysis

Top Keywords

amyotrophic lateral
20
lateral sclerosis
20
ceftriaxone
13
participants randomly
12
participants assigned
12
assigned ceftriaxone
12
received ceftriaxone
12
ceftriaxone placebo
12
participants
11
placebo
11

Similar Publications

Spinocerebellar ataxias (SCAs) are dominantly inherited diseases that lead to neurodegeneration in the cerebellum and other parts of the nervous system. This review examines the progress that has been made in SCA2 from its initial clinical description to discovery of DNA CAG-repeat expansions in the gene. repeat alleles cover the range from recessive and dominant mendelian alleles to risk alleles for amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Background/aims: Oro-pharyngeal dysfunction has been reported in Amyotrophic Lateral Sclerosis (ALS). We aimed to assess ALS patients upper gastrointestinal (GI) motor activity and GI symptoms according to bulbar and spinal onset and severity of ALS.

Methods: ALS bulbar (B) and spinal (S) patients with ALS Functional Rating Scale (ALSFRS-r) ≥35, bulbar sub-score ≥10, and Forced Vital Capacity (FVC) >50%, underwent to: Fiberoptic Endoscopic Evaluation of Swallowing (FEES); esophageal manometry; gastric emptying; Rome symptom questionnaire.

View Article and Find Full Text PDF

Roles of C/EBPβ/AEP in Neurodegenerative Diseases.

Curr Top Med Chem

January 2025

Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.

In recent years, an increasing number of studies have shown that increased activation of aspartic endopeptidases (AEPs) is a common symptom in neurodegenerative diseases (NDDs). AEP cleaves amyloid precursor protein (APP), tau (microtubule-associated protein tau), α- synuclein (α-syn), SET (a 39-KDa phosphoprotein widely expressed in various tissues and localizes predominantly in the nucleus), and TAR DNA-binding protein 43 (TDP-43), and promotes their aggregation, contributing to Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) pathogenesis. Abundant evidence supports the notion that CCAAT/enhancer-binding protein β (C/EBPβ)/AEP may play an important role in NDDs.

View Article and Find Full Text PDF

The three-dimensional structure of proteins, achieved through the folding of the nascent polypeptide chain in vivo, is largely facilitated by molecular chaperones, which are crucial for determining protein functionality. In addition to aiding in the folding process, chaperones target misfolded proteins for degradation, acting as a quality control system within the cell. Defective protein folding has been implicated in a wide range of clinical conditions, including neurodegenerative and metabolic disorders.

View Article and Find Full Text PDF

Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!