Aims: This study aimed to examine the expression of Sonic hedgehog (SHH) signalling proteins in retinoblastoma and to evaluate its clinical significance.

Methods: Seventy-nine enucleated retinoblastoma tumours were investigated immunohistochemically using antibodies against SHH pathway proteins, such as SHH, glioma-associated oncogene homologue (GLI) 1, GLI2, GLI3 and ABC binding cassette G2 (ABCG2). Western blotting of SHH signalling proteins was performed in two retinoblastoma cell lines.

Results: SHH was expressed in most retinoblastoma cases (78 of 79, 98.7%), with 21 cases (26.6%) showing strong expression. GLI1 and GLI2 were also frequently expressed: 67 of 78 cases (85.9%) and 71 of 77 cases (92.2%), respectively. GLI3, a transcriptional repressor, was expressed at low levels in 23 of the 78 cases (29.5%). High ABCG2 expression was found in 23 of the 78 cases (29.5%). High expression levels of these proteins in retinoblastoma cell lines were confirmed by western blotting. The expression of SHH was associated with advanced stages, local invasion and metastasis (all p<0.05).

Conclusions: SHH signalling molecules were frequently expressed in retinoblastoma tumour cells, and high SHH expression was closely related to an advanced disease status. Our results suggest that the SHH signalling pathway may play a role in the progression of retinoblastoma.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jclinpath-2014-202434DOI Listing

Publication Analysis

Top Keywords

signalling proteins
12
sonic hedgehog
8
frequently expressed
8
expressed retinoblastoma
8
shh signalling
8
proteins retinoblastoma
8
western blotting
8
retinoblastoma cell
8
cases 295%
8
295% high
8

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).

View Article and Find Full Text PDF

Background: Interleukin-1 receptor-associated kinase1 (IRAK1) plays a considerable role in the inflammatory signaling pathway. The current study aimed to identify any association between (rs1059703) single nucleotide polymorphism (SNP) and vulnerability to rheumatological diseases in the pediatric and adult Egyptian population.

Patients And Methods: The current study included four patient groups: adult Systemic lupus erythematosus (SLE), Rheumatoid arthritis (RA), juvenile systemic lupus erythematosus (JSLE), and juvenile idiopathic arthritis (JIA).

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

P2YR-IGFBP2 signaling: new contributor to astrocyte-neuron communication.

Purinergic Signal

January 2025

International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.

In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!