Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Maesasaponins produced by the African shrub Maesa lanceolata are oleanane-type saponins with diverse biological activities. Candidate maesasaponin biosynthesis genes were identified through transcript profiling of M. lanceolata shoot cultures treated with methyl jasmonate, a well-known elicitor of plant specialized metabolism. Heterologous expression of the identified genes in Saccharomyces cerevisiae led to the identification of one oxidosqualene cyclase (MlbAS) and two cytochrome P450s, CYP716A75 and CYP87D16, which catalyse three enzymatic steps of maesasaponin biosynthesis. MlbAS is a β-amyrin synthase that converts 2,3-oxidosqualene to β-amyrin in yeast, and its role in maesasaponin biosynthesis was confirmed by gain- and loss-of-gene-function experiments in transgenic M. lanceolata plants. When expressed in β-amyrin-producing yeast, CYP716A75 catalyses the C-28 oxidation of β-amyrin, leading to the accumulation of mainly erythrodiol. Accordingly, expression of CYP716A75 in a Medicago truncatula mutant lacking C-28 oxidase activity partially complemented the mutant phenotype. CYP87D16 catalyses the C-16α oxidation of β-amyrin in yeast, leading to the accumulation of 16α-hydroxy β-amyrin. This activity was hitherto only linked to a CYP716-type P450 from a distinct plant species, thereby suggesting that C-16α oxidase activity has evolved independently in different plant lineages. The identified biosynthesis genes will be useful for synthetic biology programs toward the production of bioactive triterpenoids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/mp/ssu110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!