A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unravelling the Triterpenoid Saponin Biosynthesis of the African Shrub Maesa lanceolata. | LitMetric

Unravelling the Triterpenoid Saponin Biosynthesis of the African Shrub Maesa lanceolata.

Mol Plant

Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium

Published: October 2014

AI Article Synopsis

  • Maesasaponins are bioactive compounds derived from the African shrub Maesa lanceolata, and their production involves specific biosynthesis genes.
  • The study identified key genes responsible for the enzymatic steps in biosynthesis by analyzing treated plant shoot cultures and expressing these genes in yeast.
  • Findings revealed that certain cytochrome P450 enzymes catalyze significant oxidation steps in the conversion of precursor molecules to maesasaponins, indicating potential for synthetic biology applications in producing these beneficial compounds.

Article Abstract

Maesasaponins produced by the African shrub Maesa lanceolata are oleanane-type saponins with diverse biological activities. Candidate maesasaponin biosynthesis genes were identified through transcript profiling of M. lanceolata shoot cultures treated with methyl jasmonate, a well-known elicitor of plant specialized metabolism. Heterologous expression of the identified genes in Saccharomyces cerevisiae led to the identification of one oxidosqualene cyclase (MlbAS) and two cytochrome P450s, CYP716A75 and CYP87D16, which catalyse three enzymatic steps of maesasaponin biosynthesis. MlbAS is a β-amyrin synthase that converts 2,3-oxidosqualene to β-amyrin in yeast, and its role in maesasaponin biosynthesis was confirmed by gain- and loss-of-gene-function experiments in transgenic M. lanceolata plants. When expressed in β-amyrin-producing yeast, CYP716A75 catalyses the C-28 oxidation of β-amyrin, leading to the accumulation of mainly erythrodiol. Accordingly, expression of CYP716A75 in a Medicago truncatula mutant lacking C-28 oxidase activity partially complemented the mutant phenotype. CYP87D16 catalyses the C-16α oxidation of β-amyrin in yeast, leading to the accumulation of 16α-hydroxy β-amyrin. This activity was hitherto only linked to a CYP716-type P450 from a distinct plant species, thereby suggesting that C-16α oxidase activity has evolved independently in different plant lineages. The identified biosynthesis genes will be useful for synthetic biology programs toward the production of bioactive triterpenoids.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mp/ssu110DOI Listing

Publication Analysis

Top Keywords

maesasaponin biosynthesis
12
african shrub
8
shrub maesa
8
maesa lanceolata
8
biosynthesis genes
8
β-amyrin yeast
8
oxidation β-amyrin
8
leading accumulation
8
oxidase activity
8
biosynthesis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!