Rapid chemical reaction workup based on a rigid solvent extraction.

Org Lett

Rigid Solutions, LLC , Shelbyville, Kentucky 40066, United States.

Published: October 2014

The conventional chemical reaction workup based on liquid-liquid extraction is a time- and labor-consuming practice. We have developed a substantially faster technique for the routine workup that relies on a porous organic polymer (Porelite) supported solvent phase to extract organic products from an aqueous reaction mixture. We call this process rigid solvent extraction. Using this technique, the tedious liquid-liquid extraction can be replaced by a simple filtration, making parallel operation and automation feasible.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol501418tDOI Listing

Publication Analysis

Top Keywords

chemical reaction
8
reaction workup
8
workup based
8
rigid solvent
8
solvent extraction
8
liquid-liquid extraction
8
rapid chemical
4
based rigid
4
extraction
4
extraction conventional
4

Similar Publications

Ni-Catalyzed Enantioselective Desymmetrization: Development of Divergent Acyl and Decarbonylative Cross-Coupling Reactions.

J Am Chem Soc

January 2025

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Ni-catalyzed asymmetric reductive cross-coupling reactions provide rapid and modular access to enantioenriched building blocks from simple electrophile precursors. Reductive coupling reactions that can diverge through a common organometallic intermediate to two distinct families of enantioenriched products are particularly versatile but underdeveloped. Here, we describe the development of a bis(oxazoline) ligand that enables the desymmetrization of -anhydrides.

View Article and Find Full Text PDF

This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.

View Article and Find Full Text PDF

All-solid-state lithium-ion batteries (ASSLBs) are the next advancement in battery technology which is expected to power the next generation of electronics, particularly electric vehicles due to their high energy density and superior safety. ASSLBs require solid electrolytes with high ionic conductivity to serve as a Li-ion battery, driving extensive research efforts to enhance the ionic conductivity of the existing solid electrolytes. Keeping this in view, the B-site of LiLaTiO (LLTO) solid electrolyte has been partially substituted with Ga and novel Ga-doped LLTO (Li LaTi Ga O) solid-electrolytes are fabricated using the solid-state reaction method, followed by sintering at 1100 °C for 2 h.

View Article and Find Full Text PDF

Molecular changes have a substantial impact on the onset of colorectal cancer (CRC). Complexes of HOTAIR and miRNAs disrupt several cellular functions during carcinogenesis, primarily by disrupting several carcinogenic signaling pathways. In the present study, the relationships between the serum levels of transforming growth factor-β1 (TGF-β1), sirtuin-1 (SIRT1) and E-cadherin and those of HOX transcript antisense intergenic RNA (HOTAIR) and microRNA-130a (miR-130a) in individuals with CRC were analyzed, including their correlations and diagnostic potential.

View Article and Find Full Text PDF

Platform chemicals from renewable resources with broad applications are highly desirable, particularly for replacing fossil-based monomers. Bifunctional aliphatic ester-aldehydes, accessible via regioselective hydroformylation of unsaturated oleochemicals, can be converted into linear ω-amino/ω-hydroxy esters and dicarboxylic acids-key building blocks for biobased aliphatic polycondensates. However, their success hinges on efficient, economically viable production, with catalyst recycling being critical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!