AI Article Synopsis

  • The study highlights the use of localized surface plasmon resonance (LSPR) to enhance the efficiency of dye-sensitized solar cells (DSSCs) by incorporating size-controlled gold nanoparticles (Au NPs) into the design.
  • The synthetic method for Au NPs allows for mass production and uniformity, which leads to an 11% increase in power conversion efficiency due to improved photocurrent generation.
  • Additionally, the integration of a cobalt-based noncorrosive redox mediator significantly boosts the long-term stability of these plasmonic structures, maintaining performance for up to 1000 hours, representing a breakthrough in the durability of plasmonic DSSCs.

Article Abstract

We demonstrate the localized surface plasmon resonance (LSPR) effect, which can enhance the photovoltaic properties of dye-sensitized solar cells (DSSCs), and the long-term stability of size-controlled plasmonic structures using a noncorrosive redox mediator. Gold nanoparticles (Au NPs) were synthesized with a phase transfer method based on ligand exchange. This synthetic method is advantageous because the uniformly sized Au NPs, can be mass produced and easily applied to DSSC photoanodes. The plasmonic DSSCs showed an 11% improvement of power conversion efficiency due to the incorporation of 0.07 wt % Au NPs, compared to the reference DSSCs without Au NPs. The improved efficiency was primarily due to the enhanced photocurrent generation by LSPR effect. With the cobalt redox mediator, the long-term stability of the plasmonic structures also significantly increased. The plasmonic DSSCs with cobalt(II/III) tris(2,2'-bipyridine) ([Co(bpy)3](2+/3+)) redox mediator maintained the LSPR effect with stable photovoltaic performance for 1000 h. This is, to our knowledge, the first demonstration of the long-term stability of plasmonic nanostructures in plasmonic DSSCs based on liquid electrolytes. As a result, the enhanced long-term stability of plasmonic NPs via a noncorrosive redox mediator will increase the feasibility of plasmonic DSSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am5051982DOI Listing

Publication Analysis

Top Keywords

long-term stability
20
redox mediator
20
stability plasmonic
16
plasmonic dsscs
16
noncorrosive redox
12
plasmonic
9
photovoltaic properties
8
dye-sensitized solar
8
solar cells
8
plasmonic structures
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!