Standard treatment for glioblastoma comprises surgical resection, chemotherapy with temozolomide, and radiotherapy. Nevertheless, majority of glioblastoma patients have recurrence from resistance to the cytotoxic conventional therapies. We examined combinational effects of KML001, an arsenic compound targeting telomeres of chromosomes with temozolomide or irradiation, in glioblastoma cell lines and xenograft models, to overcome the therapeutic limitation of chemoradiation therapy for glioblastoma. Although KML001 alone showed little effects on in vitro survival of glioblastoma cells, cell death by in vitro temozolomide treatment or irradiation was synergistically potentiated by combination with KML001. Since phosphorylated γ-H2AX, cleaved casepase-3, and cleaved PARP were dramatically increased by KML001, the synergistic effects would be mediated by increased DNA damage and subsequent tumor cell apoptosis. Combinatorial effects of KML001 were observed not only in chemo- and radiosensitive glioblastoma cell line, U87MG, but also in the resistant cell line, U251MG. In the U87MG glioblastoma xenograft models, KML001 did not have systemic toxicity but showed synergistic therapeutic effects in combination with temozolomide or irradiation to reduce tumor volumes significantly. These data indicated that KML001 could be a candidate sensitizer to potentiate therapeutic effects of conventional cytotoxic treatment for glioblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176651PMC
http://dx.doi.org/10.1155/2014/747415DOI Listing

Publication Analysis

Top Keywords

glioblastoma
9
kml001
8
glioblastoma cells
8
dna damage
8
treatment glioblastoma
8
effects kml001
8
temozolomide irradiation
8
glioblastoma cell
8
xenograft models
8
therapeutic effects
8

Similar Publications

The widespread use of wireless communication technologies has increased human exposure to radiofrequency electromagnetic fields (RF-EMFs). Considering the brain's close proximity to mobile phones and its entirely electrical transmission network, it emerges as the organ most profoundly impacted by the RF field. This study aims to investigate the potential effects of RF radiation on cell viability, apoptosis, and gene expressions in glioblastoma cells (U118-MG) at different exposure times (1, 24, and 48 h).

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most prevalent, treatment-resistant, and fatal form of brain malignancy. It is characterized by genetic heterogeneity, and an infiltrative nature, and GBM treatment is highly challenging. Despite multimodal therapies, clinicians lack efficient prognostic and predictive markers.

View Article and Find Full Text PDF

Amide proton transfer-weighted (APTw) imaging and derived quantitative metrics in evaluating gliomas: Improved performance compared to magnetization transfer ratio asymmetry (MTR).

Acad Radiol

January 2025

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.Z., Y.L., Y.L., Y.D., N.S., Y.X., S.Y., Y.F., J.Z., D.L., L.L., W.Z.). Electronic address:

Rationale And Objectives: Isocitrate dehydrogenase (IDH) status, glioma subtypes and tumor proliferation are important for glioma evaluation. We comprehensively compare the diagnostic performance of amide proton transfer-weighted (APTw) MRI and its related metrics in glioma diagnosis, in the context of the latest classification.

Materials And Methods: Totally 110 patients with adult-type diffuse gliomas underwent APTw imaging.

View Article and Find Full Text PDF

Hemorrhagic stroke is a known complication of glioma, yet the underlying mechanisms remain poorly understood. This study aims to investigate key biomarkers of glioma-related hemorrhage to provide insights into glioma molecular therapies. Data were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases to analyze differentially expressed genes (DEGs) in glioma by contrasting glioblastoma (GBM) with low-grade gliomas (LGGs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!