Interactome analysis of myeloid-derived suppressor cells in murine models of colon and breast cancer.

Oncotarget

Federal Clinical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia. Insilico Medicine, Inc., Johns Hopkins University, Baltimore, MD, USA. Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russian. The Biogerontology Research Foundation, BGRF, London, UK.

Published: November 2014

In solid cancers, myeloid derived suppressor cells (MDSC) infiltrate (peri)tumoral tissues to induce immune tolerance and hence to establish a microenvironment permissive to tumor growth. Importantly, the mechanisms that facilitate such infiltration or a subsequent immune suppression are not fully understood. Hence, in this study, we aimed to delineate disparate molecular pathways which MDSC utilize in murine models of colon or breast cancer. Using pathways enrichment analysis, we completed interactome maps of multiple signaling pathways in CD11b+/Gr1(high/low) MDSC from spleens and tumor infiltrates of mice with c26GM colon cancer and tumor infiltrates of MDSC in 4T1 breast cancer. In both cancer models, infiltrating MDSC, but not CD11b+ splenic cells, have been found to be enriched in multiple signaling molecules suggestive of their enhanced proliferative and invasive phenotypes. The interactome data has been subsequently used to reconstruct a previously unexplored regulation of MDSC cell cycle by the c-myc transcription factor which was predicted by the analysis. Thus, this study represents a first interactome mapping of distinct multiple molecular pathways whereby MDSC sustain cancer progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294358PMC
http://dx.doi.org/10.18632/oncotarget.2489DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
suppressor cells
8
murine models
8
models colon
8
colon breast
8
molecular pathways
8
pathways mdsc
8
multiple signaling
8
tumor infiltrates
8
mdsc
7

Similar Publications

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.

Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.

View Article and Find Full Text PDF

Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.

View Article and Find Full Text PDF

Sarcopenia as a Prognostic Factor and Multimodal Interventions in Breast Cancer.

Int J Gen Med

December 2024

Department of Thyroid and Breast Surgery, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.

Objective: This study aims to demonstrate the impact of sarcopenia on the prognosis of early breast cancer and its role in early multimodal intervention.

Methods: The clinical data of patients (n=285) subjected to chemotherapy for early-stage breast cancer diagnosed pathologically between January 1, 2016, and December 31, 2020, in our hospital were retrospectively analyzed. Accordingly, the recruited subjects were divided into sarcopenia (n=85) and non-sarcopenia (n=200) groups according to CT diagnosis correlating with single-factor and multifactorial logistic regression analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!