AI Article Synopsis

  • Researchers wanted to see if inhaled budesonide (BUD) could help prevent Acute Mountain Sickness (AMS) at high altitudes.
  • They tested BUD on 80 people who were going to a high place, comparing it to a placebo and other treatments for 3 days.
  • The results showed that BUD significantly reduced AMS symptoms without any side effects, possibly by helping to increase oxygen levels in the blood.

Article Abstract

Background: Oral glucocorticoids can prevent acute mountain sickness (AMS). Whether inhaled budesonide (BUD) can prevent AMS remains unknown.

Objective: Our aim was to investigate the effectiveness of BUD in AMS prevention.

Methods: Eighty subjects were randomly assigned to receive budesonide (BUD, inhaled), procaterol tablet (PT), budesonide/formoterol (BUD/FM, inhaled), or placebo tablet (n = 20 in each group). Subjects were treated for 3 days before ascending from 500 m to 3700 m within 2.5 h by air. Lake Louis AMS questionnaire, blood pressure, heart rate, and oxygen saturation (SpO2) were examined at 20, 72, and 120 h after high-altitude exposure. Pulmonary function was measured at 20 h after exposure.

Results: Compared with placebo, BUD significantly reduced the incidence of AMS (70% vs. 25% at 20 h, p < 0.05; both 10% vs. 5% at 72 and 120 h, both p > 0.05) without side effects. The relative risk was 0.357, and the risk difference was 0.45. Mean SpO2 was higher in BUD, BUD/FM, and PT groups than in the placebo group at 20 h (p < 0.05). SpO2 in all 80 subjects dropped after ascent (98.1% to 88.12%, p < 0.01) and increased gradually, but it was still lower at 120 h than at baseline (92.04% vs. 98.1%, p < 0.01). Pulmonary function did not differ among the four groups at 20 h.

Conclusion: BUD can prevent AMS without side effects. The alleviation of AMS may be related to increased blood oxygen levels rather than pulmonary function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jemermed.2014.07.047DOI Listing

Publication Analysis

Top Keywords

pulmonary function
12
inhaled budesonide
8
acute mountain
8
mountain sickness
8
budesonide bud
8
bud prevent
8
prevent ams
8
side effects
8
ams
7
bud
6

Similar Publications

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) frequently cause immune-related adverse events (irAEs), with thyroid irAEs being the most common endocrine-related irAEs. The incidence of overt thyroid irAEs ranged 8.9-22.

View Article and Find Full Text PDF

Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.

View Article and Find Full Text PDF

Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases.

View Article and Find Full Text PDF

TSLP acts on regulatory T cells to maintain their identity and limit allergic inflammation.

Sci Immunol

January 2025

Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.

Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (T), which drive the immune response, and regulatory T cells (T), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on T versus T to balance type 2 immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!