Sterigmatocystin (ST), a mycotoxin commonly found in food and feed commodities, has been classified as a "possible human carcinogen." Our previous studies suggested that ST exposure might be a risk factor for esophageal cancer and that ST may induce DNA damage and G2 phase arrest in immortalized human esophageal epithelial cells (Het-1A). To further confirm and explore the cellular responses of ST in human esophageal epithelia, we comparatively evaluated DNA damage, cell cycle distribution and the relative mechanisms in primary cultured human esophageal epithelial cells (EPC), which represent a more representative model of the in vivo state, and Het-1A cells. In this study, we found that ST could induce DNA damage in both EPC and Het-1A cells but led to G1 phase arrest in EPC cells and G2 phase arrest in Het-1A cells. Furthermore, our results indicated that the activation of the ATM-Chk2 pathway was involved in ST-induced G1 phase arrest in EPC cells, whereas the p53-p21 pathway activation in ST-induced G2 phase arrest in Het-1A cells. Studies have demonstrated that SV40 large T-antigen (SV40LT) may disturb cell cycle progression by inactivating some of the proteins involved in the G1/S checkpoint. Het-1A is a non-cancerous epithelial cell line immortalized by SV40LT. To evaluate the possible perturbation effect of SV40LT on ST-induced cell cycle disturbance in Het-1A cells, we knocked down SV40LT of Het-1A cells with siRNA and found that under this condition, ST-induced G2 arrest was significantly attenuated, whereas the proportion of cells in the G1 phase was significantly increased. Furthermore, SV40LT-siRNA also inhibited the activation of the p53-p21 signaling pathway induced by ST. In conclusion, our data indicated that ST could induce DNA damage in both primary cultured and immortalized esophageal epithelial cells. In primary human esophageal epithelial cells, ST induced DNA damage and then triggered the ATM-Chk2 pathway, resulting in G1 phase arrest, whereas in SV40LT-immortalized human esophageal epithelial cells, SV40LT-mediated G1 checkpoint inactivation occurred, and ST-DNA damage activated p53-p21 signaling pathway, up-regulating G2/M phase regulatory proteins and finally leading to a G2 phase arrest. Thus, the SV40LT-mediated G1 checkpoint inactivation is responsible for the difference in the cell cycle arrest by ST between immortalized and primary cultured human esophageal epithelial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-014-1362-z | DOI Listing |
HGG Adv
January 2025
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).
View Article and Find Full Text PDFCurr Oncol Rep
January 2025
Department of Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Purpose Of The Review: This narrative review aims to provide an overview of recently completed randomized trials and expert consensus recommendations, and their implications for clinical practice and future trial design in patients with de-novo esophagogastric oligometastatic disease (OMD).
Recent Findings: The IKF-575/RENAISSANCE phase III trial showed no significant overall survival difference between systemic therapy alone and systemic therapy combined with local therapy for patients with gastric or gastroesophageal junction cancer and de-novo OMD, except for patients with retroperitoneal lymph node metastases only. The ESO-Shanghai 13 phase II trial demonstrated superiority of adding local therapy to systemic therapy for progression-free and overall survival in oligometastatic esophageal squamous cell carcinoma.
Cancer Immunol Immunother
January 2025
Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are distinct histological subtypes of esophageal cancer. The tumor microenvironment of each subtype significantly influences the efficacy of immunotherapy. However, the characteristics of the tumor microenvironments of both subtypes, as well as their specific impacts on immunotherapy outcomes, still require further elucidation.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Departments of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
Background: Esophageal cancer (ESC) is an aggressive disease which often presents at an advanced stage. Despite trimodal therapy, 40-50% patients can develop metastatic disease by 18 months. Identification of patients at risk for metastatic spread is challenging with need for improved prognostication.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
Chimeric antigen receptor (CAR) T cell therapy for solid tumors faces significant challenges, including inadequate infiltration, limited proliferation, diminished effector function of CAR T cells, and an immunosuppressive tumor microenvironment (TME). In this study, we utilized The Cancer Genome Atlas database to identify key chemokines (CCL4, CCL5, and CCR5) associated with T cell infiltration across various solid tumor types. The CCL4/CCL5-CCR5 axis emerged as significantly correlated with the presence of T cells within tumors, and enhancing the expression of CCR5 in CAR T cells bolstered their migratory capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!