Traditional approaches for the analysis of collective behavior entail digitizing the position of each individual, followed by evaluation of pertinent group observables, such as cohesion and polarization. Machine learning may enable considerable advancements in this area by affording the classification of these observables directly from images. While such methods have been successfully implemented in the classification of individual behavior, their potential in the study collective behavior is largely untested. In this paper, we compare three methods for the analysis of collective behavior: simple tracking (ST) without resolving occlusions, machine learning with real data (MLR), and machine learning with synthetic data (MLS). These methods are evaluated on videos recorded from an experiment studying the effect of ambient light on the shoaling tendency of Giant danios. In particular, we compute average nearest-neighbor distance (ANND) and polarization using the three methods and compare the values with manually-verified ground-truth data. To further assess possible dependence on sampling rate for computing ANND, the comparison is also performed at a low frame rate. Results show that while ST is the most accurate at higher frame rate for both ANND and polarization, at low frame rate for ANND there is no significant difference in accuracy between the three methods. In terms of computational speed, MLR and MLS take significantly less time to process an image, with MLS better addressing constraints related to generation of training data. Finally, all methods are able to successfully detect a significant difference in ANND as the ambient light intensity is varied irrespective of the direction of intensity change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13428-014-0519-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!