Two novel tetra- and deca-nuclear dysprosium compounds, namely, [Dy4(μ3-OH)2(L)10(bipy)2(H2O)2]n (1) and {[Dy10(μ3-OH)8(L)22(bipy)2(H2O)2]·5H2O}n (2) (L = 3-fluoro-4-(trifluoromethyl)benzoic acid; bipy = 2,2'-bipyridine), have been successfully obtained by hydrothermal reaction at different pH values. The solid state structures of 1 and 2 were established by the single crystal X-ray diffraction technique, and both of them exhibit complicated 1D chains with [Dy4] (1) and [Dy10] (2) cluster units, respectively. Adjacent [Dy4] in 1 and [Dy10] in 2 are connected by two bridging carboxylate groups in the η(1):η(1):μ2 mode. Magnetic studies reveal that they exhibit different magnetic relaxation behaviors with the energy barrier of 23.6 K for 1 and 3.2 K for 2. Interestingly, the large divergence in both the structures and magnetic properties for 1 and 2 only originated from the different pH values in preparing them.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4dt02427cDOI Listing

Publication Analysis

Top Keywords

magnetic relaxation
8
[dy4] [dy10]
8
ph-induced dy₄
4
dy₄ dy₁₀
4
dy₁₀ cluster-based
4
cluster-based chains
4
magnetic
4
chains magnetic
4
relaxation features
4
features novel
4

Similar Publications

Best current practice in the analysis of dynamic contrast enhanced (DCE)-MRI is to employ a voxel-by-voxel model selection from a hierarchy of nested models. This nested model selection (NMS) assumes that the observed time-trace of contrast-agent (CA) concentration within a voxel, corresponds to a singular physiologically nested model. However, admixtures of different models may exist within a voxel's CA time-trace.

View Article and Find Full Text PDF

Lanthanide-based Single-Molecule Magnets (SMMs) with optical and magnetic properties provide a means to understand intrinsic energy levels of 4f ions and their influence on optical and magnetic behaviour. Fundamental understanding of their luminescent and slow relaxation of the magnetization behaviour is critical for targeting and designing SMMs with multiple functionalities. Herein, we seek to investigate the role of Dy coordination environment and fine electronic structure on the slow magnetic relaxation and luminescence thermometry.

View Article and Find Full Text PDF

Recent advances in computational methods like AlphaFold have transformed structural biology, enabling accurate modeling of protein complexes and driving applications in drug discovery and protein engineering. However, predicting the structure of systems involving weak, transient, or dynamic interactions, or of complexes with disordered regions, remains challenging. Nuclear Magnetic Resonance (NMR) spectroscopy offers atomic-level insights into biomolecular complexes, even in weakly interacting and dynamic systems.

View Article and Find Full Text PDF

Emotion dysregulation in youths with obsessive-compulsive disorder and its implication for treatment - An exploratory study from the TECTO trial: A protocol and statistical analysis plan.

Contemp Clin Trials Commun

February 2025

Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.

Background: Research on improving psychotherapy for youths with obsessive-compulsive disorder (OCD), including cognitive behavioral therapy (CBT), should explore what works for whom and how by examining baseline moderators and potential mechanisms of change. Emotion dysregulation is proposed as an intermediate therapy factor in a transdiagnostic framework. This study investigates emotion dysregulation as an outcome, mechanism, and moderator of psychotherapy in youths aged 8-17 years with OCD.

View Article and Find Full Text PDF

Background: The main goal of the study was to find the magnetic resonance imaging (MRI) parameters that optimize contrast between tissue and thermal lesions produced by focused ultrasound (FUS) using T1-weighted (T1-W) and T2-weighted (T2-W) fast spin echo (FSE) sequences.

Methods: FUS sonications were performed in porcine tissue using a single-element FUS transducer of 2.6 MHz in 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!