Platelet-von Willebrand factor (VWF) interactions must be tightly regulated in order to promote effective hemostasis and prevent occlusive thrombus formation. However, it is unclear what role the inherent properties of the bond formed between the platelet receptor glycoprotein Ibα and the A1 domain of VWF play in these processes. Using VWF-A1 knock-in mice with mutations that enhance (I1309V) or disrupt (R1326H) platelet receptor glycoprotein Ibα binding, we now demonstrate that the kinetic interplay between two distinct contact surfaces influences the site and extent to which platelets bind VWF. Incorporation of R1326H mutation into the major site shortened bond lifetime, yielding defects in hemostasis and thrombosis comparable to VWF-deficient animals. Similarly, disrupting this region of contact with an allosteric inhibitor impaired human platelet accrual in damaged arterioles. In contrast, the I1309V mutation near the minor site prolonged bond lifetime, which was essential for the development of a type 2B-like VWD phenotype. However, combining the R1326H and I1309V mutations normalized both bond kinetics and the hemostatic and thrombotic properties of VWF. These findings broaden our understanding of mechanisms governing platelet-VWF interactions in health and disease, and underscore the importance of combined biophysical and genetic approaches in identifying potential therapeutic avenues for treating bleeding and thrombotic disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263987PMC
http://dx.doi.org/10.1182/blood-2014-04-569392DOI Listing

Publication Analysis

Top Keywords

kinetic interplay
8
hemostasis thrombosis
8
platelet receptor
8
receptor glycoprotein
8
glycoprotein ibα
8
bond lifetime
8
exploiting kinetic
4
interplay gpibα-vwf
4
gpibα-vwf binding
4
binding interfaces
4

Similar Publications

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

Due to increasing plastic production, the continuous release of primary and secondary nanoplastic particles (NPs, <1 μm) has become an emerging contaminant in terrestrial environments. The fate and transport of NPs in subsurface environments remain poorly understood, largely due to the complex interplay of mineralogical, chemical, biological, and morphological heterogeneity. This study examines interactions between abundant subsurface minerals and NPs under controlled water chemistry (1 mM KCl, pH 5.

View Article and Find Full Text PDF

Light chain (AL) amyloidosis is the most common systemic amyloid disease characterized by abnormal accumulation of amyloid fibrils derived from immunoglobulin light chains (LCs). Both full-length (FL) LCs and their isolated variable (VL) and constant (CL) domains contribute to amyloid deposits in multiple organs, with the VL domain predominantly forming the fibril core. However, the role and interplay of these domains in amyloid aggregation and toxicity are poorly understood.

View Article and Find Full Text PDF

This paper investigates the impact of varying humidity conditions on the carbonation depth in hardened cement paste using a 3-dimensional microscale kinetic Monte Carlo (kMC) approach. The kMC algorithm effectively simulates the carbonation process by capturing the interplay between CO diffusion and relative humidity at the microscale, providing insights into macro trends that align with historical models. The study reveals that the maximum carbonation depth is achieved at relative humidity levels between 55 and 65%, where the balance between water and CO diffusion is optimized.

View Article and Find Full Text PDF

This study examines how heart rate (HR) affects hemodynamics in a South African infant with Coarctation of the Aorta. Computed tomography angiography segments aortic coarctation anatomy; Doppler echocardiography derives inlet flow waveforms. Simulations occur at 100, 120, and 160 beats per minute, representing reduced, resting, and elevated HR levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!