Deep networks are effective encoders of periodicity.

IEEE Trans Neural Netw Learn Syst

Published: October 2014

We present a comparative theoretical analysis of representation in artificial neural networks with two extreme architectures, a shallow wide network and a deep narrow network, devised to maximally decouple their representative power due to layer width and network depth. We show that, given a specific activation function, models with comparable VC-dimension are required to guarantee zero error modeling of real functions over a binary input. However, functions that exhibit repeating patterns can be encoded much more efficiently in the deep representation, resulting in significant reduction in complexity. This paper provides some initial theoretical evidence of when and how depth can be extremely effective.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2013.2296046DOI Listing

Publication Analysis

Top Keywords

deep networks
4
networks effective
4
effective encoders
4
encoders periodicity
4
periodicity comparative
4
comparative theoretical
4
theoretical analysis
4
analysis representation
4
representation artificial
4
artificial neural
4

Similar Publications

hERGAT: predicting hERG blockers using graph attention mechanism through atom- and molecule-level interaction analyses.

J Cheminform

January 2025

Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, Republic of Korea.

The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources.

View Article and Find Full Text PDF

Background: Assessing the difficulty of impacted lower third molar (ILTM) surgical extraction is crucial for predicting postoperative complications and estimating procedure duration. The aim of this study was to evaluate the effectiveness of a convolutional neural network (CNN) in determining the angulation, position, classification and difficulty index (DI) of ILTM. Additionally, we compared these parameters and the time required for interpretation among deep learning (DL) models, sixth-year dental students (DSs), and general dental practitioners (GPs) with and without CNN assistance.

View Article and Find Full Text PDF

Background: Early detection and diagnosis of cancer are vital to improving outcomes for patients. Artificial intelligence (AI) models have shown promise in the early detection and diagnosis of cancer, but there is limited evidence on methods that fully exploit the longitudinal data stored within electronic health records (EHRs). This review aims to summarise methods currently utilised for prediction of cancer from longitudinal data and provides recommendations on how such models should be developed.

View Article and Find Full Text PDF

MHNet: Multi-view High-Order Network for Diagnosing Neurodevelopmental Disorders Using Resting-State fMRI.

J Imaging Inform Med

January 2025

Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.

Deep learning models have shown promise in diagnosing neurodevelopmental disorders (NDD) like ASD and ADHD. However, many models either use graph neural networks (GNN) to construct single-level brain functional networks (BFNs) or employ spatial convolution filtering for local information extraction from rs-fMRI data, often neglecting high-order features crucial for NDD classification. We introduce a Multi-view High-order Network (MHNet) to capture hierarchical and high-order features from multi-view BFNs derived from rs-fMRI data for NDD prediction.

View Article and Find Full Text PDF

The rapid increase in sea levels driven by climate change presents serious risks to coastal communities around the globe. Traditional prediction models frequently concentrate on developed regions with extensive tide gauge networks, leaving a significant gap in data and forecasts for developing countries where the tide gauges are sparse. This study presents a novel deep learning approach that combines TimesGAN with ConvLSTM to enhance regional sea level predictions using the more widely available satellite altimetry data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!