Antibiotics have the potential to adversely affect the microbial community that is present in biological wastewater treatment processes. The antibiotics that exist in waste streams directly inhibit substrate degradation and also have an influence on the composition of the microbial community. The aim of this study was to evaluate the short-term inhibition impact that various antibiotic combinations had on the syntrophic bacteria, homoacetogenic and methanogenic activities of a microbial community that had been fed with propionate and butyrate as the sole carbon source and VFA mixture (acetate, propionate and butyrate). Acute tests were constructed using on a two way-factorial design, where one factor was the composition of antibiotic mixture and another was the concentration of antibiotics added. In addition, the inhibitory effect of antibiotics was evaluated by monitoring biogas production and the accumulation of individual volatile fatty acids. Specific methanogenic activity batch tests showed a significant (p<0.05) decrease in the maximum methane production rate in the presence of 1 mg L(-1) of antibiotics for the substrate in a VFA mixture and propionate; 1 mg L(-1) of ETS, 25 mg L(-1) of ET, 10 mg L(-1) of ST and ES combination for substrates butyrate. The addition of antibiotics to the batch tests affected the utilization of acetate, propionate and butyrate. This study indicated that antibiotic mixtures have an effect on homoacetogenic bacteria and methanogens, which may exert inhibitory effects on propionate and butyrate-oxidizing syntrophic bacteria, resulting in unfavorable effects on methanogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2014.09.045DOI Listing

Publication Analysis

Top Keywords

microbial community
12
antibiotic combinations
8
combinations syntrophic
8
syntrophic bacteria
8
propionate butyrate
8
inhibitory effects
4
effects antibiotic
4
bacteria homoacetogens
4
homoacetogens methanogens
4
antibiotics
4

Similar Publications

Background: The anthosphere, also known as the floral microbiome, is a crucial component of the plant reproductive system. Therefore, understanding the anthospheric microbiome is essential to explore the diversity, interactions, and functions of wildflowers that coexist in natural habitats. We aimed to explore microbial interaction mechanisms and key drivers of microbial community structures using 144 flower samples from 12 different wild plant species inhabiting the same natural environment in South Korea.

View Article and Find Full Text PDF

Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.

Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.

View Article and Find Full Text PDF

Background: In patients with inflammatory bowel diseases (IBD), functional complaints frequently persist after the clearing of inflammation and are clinically difficult to distinguish from symptoms of inflammation. In recent years, the influence of bidirectional communication between the gut and brain on gut physiology, emotions, and behavior has been demonstrated.

Research Questions: What mechanisms underlie the development of functional gastrointestinal complaints in patients with irritable bowel syndrome (IBS) and IBD? What therapeutic approaches arise from this?

Materials And Methods: Narrative review.

View Article and Find Full Text PDF

Recent evidence links gut microbiota alterations to neurodegenerative disorders, including Parkinson's disease (PD). Replenishing the abnormal composition of gut microbiota through gut microbiota-based interventions "prebiotics, probiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT)" has shown beneficial effects in PD. These interventions increase gut metabolites like short-chain fatty acids (SCFAs) and glucagon-like peptide-1 (GLP-1), which may protect dopaminergic neurons via the gut-brain axis.

View Article and Find Full Text PDF

Inoculation with the PGPB Herbaspirillum seropedicae shapes both the structure and putative functions of the wheat microbiome and causes changes in the levels of various plant metabolites described to be involved in plant growth and health. Plant growth promoting bacteria (PGPB) can establish metabolic imprints in their hosts, contributing to the improvement of plant health in different ways. However, while PGPB imprints on plant metabolism have been extensively characterized, much less is known regarding those affecting plant indigenous microbiomes, and hence it remains unknown whether both processes occur simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!