Introduction: We examined optimization of a temperature threshold testing (TTT) protocol for patients with suspected small-fiber neuropathy (SFN) to lessen the burden for both patients and technicians, without sacrificing accuracy.

Methods: Data from 81 patients with SFN (skin biopsy and TTT abnormal) and 81 without SFN (skin biopsy and TTT normal) were used. Warm, cold, and heat pain sensation thresholds were determined bilaterally on the thenar eminence and foot dorsum by methods of limits and levels. Diagnostic accuracy was determined for various sensory modality combinations through comparative corresponding area under the receiver-operator characteristic curves.

Results: Assessment of warm and cold thresholds in all extremities by the method of levels showed the best discriminatory ability (area under the curve 0.95, sensitivity 84.2%, specificity 93.8%).

Conclusions: These assessments are suggested for TTT examination in possible SFN patients. By applying this combination, the time needed for TTT can be reduced, maintaining diagnostic accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mus.24473DOI Listing

Publication Analysis

Top Keywords

temperature threshold
8
threshold testing
8
small-fiber neuropathy
8
sfn skin
8
skin biopsy
8
biopsy ttt
8
warm cold
8
diagnostic accuracy
8
ttt
5
optimizing temperature
4

Similar Publications

-Armchair graphene nanoribbons (nAGNRs) are promising components for next-generation nanoelectronics due to their controllable band gap, which depends on their width and edge structure. Using non-metal surfaces for fabricating nAGNRs gives access to reliable information on their electronic properties. We investigated the influence of light and iron adatoms on the debromination of 4,4''-dibromo--terphenyl precursors affording poly(-phenylene) (PPP as the narrowest GNR) wires through the Ullmann coupling reaction on a rutile TiO(110) surface, which we studied by scanning tunneling microscopy and X-ray photoemission spectroscopy.

View Article and Find Full Text PDF

We explore the role of activity in the occurrence of the Mpemba effect within a system of an active colloid diffusing in a potential landscape devoid of metastable minimum. The Mpemba effect is characterized by a phenomenon where a hotter system reaches equilibrium quicker than a colder one when both are rapidly cooled to the same low temperature. While a minimal asymmetry in the potential landscape is crucial for observing this effect in passive colloidal systems, the introduction of activity can either amplify or reduce the threshold of this minimal asymmetry, resulting in the activity-induced and suppressed Mpemba effect.

View Article and Find Full Text PDF

sp. nov., a novel endophytic bacterium with plant growth-promoting potential, isolated from root nodules of in Northwestern Algeria.

Int J Syst Evol Microbiol

January 2025

Dpartement de Biotechnologie, Laboratoire des Productions, Valorisations Vgtales et Microbiennes (LP2VM), Facult des Sciences de la Nature et de la Vie, B.P. 1505, El-Mnaour, Universit des Sciences et de la Technologie dOran Mohamed Boudiaf USTO-MB, Oran 31000, Algeria.

A thorough polyphasic taxonomic study, integrating genome-based taxonomic approaches, was carried out to characterize the RB5 strain isolated from root nodules of growing on the coastal dunes of Bousfer Beach (Oran, Algeria). The 16S rRNA gene sequence analysis revealed that strain RB5 had the highest similarity to LMG27940 (98.94%) and IzPS32d (98.

View Article and Find Full Text PDF

Nutrients in an aquatic system determine productivity, integrity and ecological status of the aquatic system. However, the excessive enrichment of these nutrients emanating from severe anthropogenic activity has substantially impacted water quality and biodiversity. There is diminutive information available on the water quality and trophic status of the northern Gulf of Lake Tana, Ethiopia due to accessibility difficulties.

View Article and Find Full Text PDF

Extensive research on ultrashort laser-induced melting of noble metals like Au, Ag and Cu is available. However, studies on laser energy deposition and thermal damage of their alloys, which are currently attracting interest for energy harvesting and storage devices, are limited. This study investigates the melting damage threshold (DT) of three intermetallic alloys of Au and Cu (AuCu, AuCu and AuCu) subjected to single-pulse femtosecond laser irradiation, comparing them with their constituent metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!