The success rate in previous attempts at transforming human umbilical mesenchymal stem cells (HUMSCs) isolated from Wharton's jelly of the umbilical cord into dopaminergic cells was a mere 12.7%. The present study was therefore initiated to establish a more effective procedure for better yield of dopaminergic cells in such transformation for more effective HUMSC-based therapy for parkinsonism. To examine, in vitro, the effects of enhanced Nurr1 expression in HUMSCs on their differentiation, cells were processed through the three-stage differentiation protocol. The capacity of such cells to synthesize and release dopamine was measured by HPLC. The therapeutic effects of Nurr1-overexppressed HUMSCs were examined in 6-hydroxydopamine-lesioned rats by quantification of rotations in response to amphetamine. Enhanced Nurr1 expression in HUMSCs promoted the transformation into dopaminergic cells in vitro through stepwise culturing in sonic hedgehog, fibroblast growth factor-8, and neuron-conditioned medium. The success rate was about 71%, as determined by immunostaining for tyrosine hydroxylase and around 94 nM dopamine synthesis (intracellular and released into the culture medium), as measured by HPLC. Additionally, transplantation of such cells into the striatum of hemiparkinsonian rats resulted in improvement of their behavioral deficits, as indicated by amphetamine-evoked rotation scores. Viability of the transplanted cells lasted for at least 3 months as verified by positive staining for tyrosine hydroxylase. Nurr1, FGF8, Shh, and NCM can synergistically enhance the differentiation of HUMSCs into dopaminergic cells and may pave the way for HUMSC-based treatments for Parkinson's disease.

Download full-text PDF

Source
http://dx.doi.org/10.3727/096368914X685078DOI Listing

Publication Analysis

Top Keywords

dopaminergic cells
20
cells
11
human umbilical
8
umbilical mesenchymal
8
mesenchymal stem
8
stem cells
8
hemiparkinsonian rats
8
success rate
8
enhanced nurr1
8
nurr1 expression
8

Similar Publications

Advancing Parkinson's diagnosis: seed amplification assay for α-synuclein detection in minimally invasive samples.

Mol Cell Biochem

January 2025

Neurodegenerative Diseases Laboratory, Center for Biomedicine, Universidad Mayor, Avenida Alemania 0281, 4780000, Temuco, La Araucanía, Chile.

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity, and bradykinesia, beginning with early loss of dopaminergic neurons in the ventrolateral substantia nigra and advancing to broader neurodegeneration in the midbrain. The clinical heterogeneity of PD and the lack of specific diagnostic tests present significant challenges, highlighting the need for reliable biomarkers for early diagnosis. Alpha-synuclein (α-Syn), a protein aggregating into Lewy bodies and neurites in PD patients, has emerged as a key biomarker due to its central role in PD pathophysiology and potential to reflect pathological processes.

View Article and Find Full Text PDF

TFE3-mediated neuroprotection: Clearance of aggregated α-synuclein and accumulated mitochondria in the AAV-α-synuclein model of Parkinson's disease.

Genes Dis

March 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.

Parkinson's disease (PD) is a neurodegenerative disorder characterized by fibrillar neuronal inclusions containing aggregated α-synuclein (α-Syn). While the pathology of PD is multifaceted, the aggregation of α-Syn and mitochondrial dysfunction are well-established hallmarks in its pathogenesis. Recently, TFE3, a transcription factor, has emerged as a regulator of autophagy and metabolic processes.

View Article and Find Full Text PDF

Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors.

Neurosci Bull

January 2025

Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.

Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system.

View Article and Find Full Text PDF

The smoking cessation drug cytisine exerts neuroprotection in substantia nigra pars compacta (SNc) dopaminergic (DA) neurons of female but not male 6-hydroxydopamine (6-OHDA) lesioned parkinsonian mice. To address the important question of whether circulating 17β-estradiol mediates this effect, we employ two mouse models aimed at depleting systemically circulating 17β-estradiol: (i) bilateral ovariectomy (OVX), and (ii) aromatase inhibition with systemically administered letrozole. In both models, depleting systemically circulating 17β-estradiol in female 6-OHDA lesioned parkinsonian mice results in the loss of cytisine-mediated neuroprotection as measured using apomorphine-induced contralateral rotations and SNc DA neurodegeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!