Bioprosthetic tissue matrices in complex abdominal wall reconstruction.

Plast Reconstr Surg Glob Open

Department of Plastic and Reconstructive Surgery, The Johns Hopkins Hospital, Baltimore, Md.; and Department of Plastic and Reconstructive Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex.

Published: December 2013

Background: Complex abdominal defects are difficult problems encountered by surgeons in multiple specialties. Although current evidence supports the primary repair of these defects with mesh reinforcement, it is unclear which mesh is superior for any given clinical scenario. The purpose of this review was to explore the characteristics of and clinical relevance behind bioprosthetic tissue matrices in an effort to better clarify their role in abdominal wall reconstruction.

Methods: We reviewed the peer-reviewed literature on the use of bioprosthetic mesh in human subjects. Basic science articles and large retrospective and prospective reviews were included in author's analysis. The clinical performance and characteristics of 13 bioprosthetic tissue matrices were evaluated.

Results: The majority of the products evaluated perform well in contaminated fields, where the risk of wound-healing difficulties is high. Clinical outcomes, which included infection, reherniation, and bulge formation, were variable, and the majority of the studies had a mean follow-up of less than 24 months.

Conclusions: Although bioprosthetic matrix has a multitude of indications within the growing field of abdominal wall reconstruction, the functionality, regenerative capacity, and long-term fate of these products have yet to be fully established. Furthermore, the clinical performance, indications, and contraindications for each type of matrix need to be fully evaluated in long-term outcome studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174111PMC
http://dx.doi.org/10.1097/GOX.0000000000000036DOI Listing

Publication Analysis

Top Keywords

bioprosthetic tissue
12
tissue matrices
12
abdominal wall
12
complex abdominal
8
wall reconstruction
8
clinical performance
8
bioprosthetic
5
clinical
5
matrices complex
4
abdominal
4

Similar Publications

Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs.

View Article and Find Full Text PDF

Objectives: Re-operations due to material degeneration carry a burden for patients with congenital heart disease (CHD). The study aim was to compare rapid vs. slow degeneration of biomaterials in CHD patients.

View Article and Find Full Text PDF

The autologous pericardial aortic valve repair technique developed by Ozaki et al., using glutaraldehyde-treated autologous pericardium, has demonstrated superior durability to bioprosthetic valves. However, this technique has certain limitations, including excessive cusp height and cusp fluttering due to leaflet redunduncy.

View Article and Find Full Text PDF

Background: Subaortic pannus formation complicates bioprosthetic aortic valve (AV) replacement. We report an extreme case in a continuous-flow left ventricular assist device (LVAD) patient.

Case Summary: A 49-year-old Caucasian female with dilated cardiomyopathy was bridged to transplant with a HeartWare Ventricular Assist Device (Medtronic).

View Article and Find Full Text PDF
Article Synopsis
  • Heart valve replacement surgeries involve replacing malfunctioning heart valves with either mechanical valves or bioprosthetics, both of which have significant drawbacks such as the need for lifelong anticoagulation and limited lifespan.
  • Decellularized porcine xenografts have been widely researched but come with issues like calcification, risk of viral infection, and biocompatibility concerns; however, decellularized sheep heart valves haven't been clinically tested yet.
  • The review suggests that decellularized sheep heart valves may offer better biocompatibility than porcine ones and highlights the benefits of using bioinks from decellularized extracellular matrix in 3D bioprinting for heart valve tissue engineering.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!