Hopping and the Stokes-Einstein relation breakdown in simple glass formers.

Proc Natl Acad Sci U S A

Laboratoire de Physique Théorique, Ecole Normale Supérieure, UMR 8549 CNRS, 75005 Paris, France.

Published: October 2014

One of the most actively debated issues in the study of the glass transition is whether a mean-field description is a reasonable starting point for understanding experimental glass formers. Although the mean-field theory of the glass transition--like that of other statistical systems--is exact when the spatial dimension d → ∞, the evolution of systems properties with d may not be smooth. Finite-dimensional effects could dramatically change what happens in physical dimensions,d = 2, 3. For standard phase transitions finite-dimensional effects are typically captured by renormalization group methods, but for glasses the corrections are much more subtle and only partially understood. Here, we investigate hopping between localized cages formed by neighboring particles in a model that allows to cleanly isolate that effect. By bringing together results from replica theory, cavity reconstruction, void percolation, and molecular dynamics, we obtain insights into how hopping induces a breakdown of the Stokes-Einstein relation and modifies the mean-field scenario in experimental systems. Although hopping is found to supersede the dynamical glass transition, it nonetheless leaves a sizable part of the critical regime untouched. By providing a constructive framework for identifying and quantifying the role of hopping, we thus take an important step toward describing dynamic facilitation in the framework of the mean-field theory of glasses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210276PMC
http://dx.doi.org/10.1073/pnas.1417182111DOI Listing

Publication Analysis

Top Keywords

stokes-einstein relation
8
glass formers
8
glass transition
8
mean-field theory
8
finite-dimensional effects
8
hopping
5
glass
5
hopping stokes-einstein
4
relation breakdown
4
breakdown simple
4

Similar Publications

Thermodynamics and transport in molten chloride salts and their mixtures.

Phys Chem Chem Phys

January 2025

School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.

Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids.

View Article and Find Full Text PDF

Stokes-Einstein Relation in Different Models of Water.

Molecules

November 2024

Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia.

The purpose of this paper is to discuss to which extent a microscopic version of the Stokes-Einstein (SE) relation without the hydrodynamic radius applies to liquid water. We demonstrate that the self-diffusion and shear viscosity data for five popular water models, recently reported by Ando [J. Chem.

View Article and Find Full Text PDF

How to define temperature in active systems?

J Chem Phys

December 2024

Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany.

We are used to measuring temperature with a thermometer, and we know from everyday life that different types of thermometers measure the same temperature. This experience can be based on equilibrium thermodynamics, which explains the equivalence of different possibilities to define temperature. In contrast, for systems out of equilibrium such as active matter, measurements performed with different thermometers can generally lead to different temperature values.

View Article and Find Full Text PDF

Plasma viscosity measurement is crucial in clinical diagnostics, providing insights into blood rheology and health status. Traditional methods, such as capillary and rotational viscometers, require large sample volumes and complex calibration. This study presents a novel disposable electrochemical sensor with co-facing electrodes for viscosity monitoring of plasma samples.

View Article and Find Full Text PDF

The fundamental Debye-Stokes-Einstein (DSE) relation between rotational relaxation times and shear viscosity attracts longstanding research interest as one of the most important characteristics of many glass-forming liquids. Here, we provide strong evidence, missing so far, for the relevance of anisotropy for DSE-related behavior. Dielectric spectroscopy and shear viscosity measurements were employed to get insight into the decoupling between reorientation relaxation times and viscosity for anisotropic glass-formers with dipole moments oriented parallel or perpendicular to the long molecular axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!