Macrophages are early islet-infiltrating cells seen in type 1 diabetes (T1D). While proinflammatory M1 macrophages induce T1D, M2 macrophages have been shown to delay this autoimmune disease in nonobese diabetic (NOD) mice, but the environmental cues that govern macrophage polarization and differentiation remain unresolved. We previously demonstrated the importance of reactive oxygen species (ROS) in T1D, as NOD mice deficient in NADPH oxidase (NOX)-derived superoxide (Ncf1(m1J)) were protected against T1D partly because of blunted Toll-like receptor-dependent macrophage responses. We provide evidence that NOX-derived ROS contribute to macrophage differentiation in T1D. During spontaneous diabetes progression, T1D-resistant NOD.Ncf1(m1J) islet-resident macrophages displayed a dampened M1 and increased M2 phenotype. The transfer of diabetogenic T cells into NOX-deficient NOD.Rag.Ncf1(m1J) recipients resulted in decreased TNF-α(+) and IL-1β(+) islet-infiltrating M1 macrophages and a concomitant enhancement in arginase-1(+) M2 macrophages. Mechanistic analysis of superoxide-deficient bone marrow-derived macrophages revealed a marked diminution in a proinflammatory M1 phenotype due to decreased P-STAT1 (Y701) and interferon regulatory factor 5 compared with NOD mice. We have therefore defined a novel mechanistic link between NOX-derived ROS and macrophage phenotypes, and implicated superoxide as an important factor in macrophage differentiation. Thus, targeting macrophage redox status may represent a promising therapy in halting human T1D.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338593 | PMC |
http://dx.doi.org/10.2337/db14-0929 | DOI Listing |
Front Immunol
January 2025
Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.
Type 1 diabetes (T1D) is a metabolic disorder caused by a complete lack of insulin, primarily manifested by hyperglycemia. The mechanisms underlying the onset of T1D are complex, involving genetics, environment, and various unknown factors, leading to the infiltration of various immune components into the islets. Besides T cells, B cells are now considered important contributors to the pathogenesis of T1D, according to recent studies.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.
Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
Background: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many malignant tumors. However, ICI-induced hyper-immune activation causes cardiotoxicity. Traditional treatments such as glucocorticoids and immunosuppressants have limited effectiveness and may even accelerate tumor growth.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.
Type 1 diabetes (T1D) is caused by the immune-mediated loss of pancreatic β-cells. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor which is crucial for cellular responses to low oxygen. Here, we investigate the role of β-cell HIF-1α in β-cell death and diabetes after exposure to multiple low-dose streptozotocin (MLDS).
View Article and Find Full Text PDFAs a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!