The circadian clock is finely regulated by posttranslational modifications of clock components. Mouse CRY2, a critical player in the mammalian clock, is phosphorylated at Ser557 for proteasome-mediated degradation, but its in vivo role in circadian organization was not revealed. Here, we generated CRY2(S557A) mutant mice, in which Ser557 phosphorylation is specifically abolished. The mutation lengthened free-running periods of the behavioral rhythms and PER2::LUC bioluminescence rhythms of cultured liver. In livers from mutant mice, the nuclear CRY2 level was elevated, with enhanced PER2 nuclear occupancy and suppression of E-box-regulated genes. Thus, Ser557 phosphorylation-dependent regulation of CRY2 is essential for proper clock oscillation in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248739 | PMC |
http://dx.doi.org/10.1128/MCB.00711-14 | DOI Listing |
J Mater Chem B
January 2025
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, 14004 Cordoba, Spain.
Gold nanoparticles (AuNPs) play a key role in the field of nanomedicine due to their fascinating plasmonic properties as well as their great biocompatibility. An intriguing application is the use of plasmonic photothermal therapy (PPTT) mediated by anisotropic AuNPs irradiated with a near-infrared (NIR) laser for treating ocular diseases in ophthalmology. For this purpose, bipyramidal-shaped AuNPs (BipyAu), which were surface-functionalized with three different organic ligands (citrate, polystyrene sulphonate (PSS), and cetyltrimethylammonium bromide (CTAB)), were synthesized.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
Carbonic anhydrases (CAs) are ubiquitous enzymes that catalyze reversibly both the hydration and dehydration reactions of CO and HCO-, respectively. Higher plants contain many different isoforms of CAs that can be classified into α-, β- and γ-type subfamilies. β-type CAs play a key role in the CO-concentrating mechanism, thereby contributing to efficient photosynthesis in the C plants in addition to many other biochemical reactions in plant metabolism.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Cancer cells with high expression of aldehyde dehydrogenase 1A1 (ALDH1A1) are more resistant to chemotherapy, contribute to tumor progression, and are associated with poor clinical outcomes. ALDH1A1 plays a critical role in protecting cells from reactive aldehydes and, in the case of stem cells, regulates their differentiation through the retinoic acid signaling pathway. Despite the importance of this enzyme, methods to study ALDH1A1 high-expressing cancer cells in vivo remain limited.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Civil Engineering and Mechanics of Lanzhou University, Lanzhou 730000, China.
The controllable regulation of immune and osteogenic processes plays a critical role in the modification of biocompatible materials for tissue regeneration. In this study, titanium dioxide-europium coatings (MAO/Eu) were prepared on the surface of a titanium alloy (Ti-6Al-4V) a one-step process combining microarc oxidation (MAO) and doping. The incorporation of Eu significantly improved the hydrophilic and mechanical properties of the TiO coatings without altering their morphology.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA.
Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents. While it is known transforming growth factor-β signaling is important in embryonic neurogenesis, its role in postnatal neurogenesis remains unclear. In this study, to define the precise role of transforming growth factor-β signaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo, we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-β signaling in neural stem cells in (mGFAPcre-ALK5fl/fl-Ai9) or immature neuroblasts in (DCXcreERT2-ALK5fl/fl-Ai9).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!