Mechanisms of soil Pb immobilization by Bacillus subtilis DBM, a bacterial strain isolated from a heavy-metal-contaminated soil, were investigated. Adsorption and desorption experiments with living bacterial cells as well as dead cells revealed that both extracellular adsorption and intracellular accumulation were involved in the Pb(2+) removal from the liquid phase. Of the sequestered Pb(II), 8.5% was held by physical entrapment within the cell wall, 43.3% was held by ion-exchange, 9.7% was complexed with cell surface functional groups or precipitated on the cell surface, and 38.5% was intracellularly accumulated. Complexation of Pb(2+) with carboxyl, hydroxyl, carbonyl, amido, and phosphate groups was demonstrated by Fourier transform infrared spectroscopic analysis. Precipitates of Pb5(PO4)3OH, Pb5(PO4)3Cl and Pb10(PO4)6(OH)2 that formed on the cell surface during the biosorption process were identified by X-ray diffraction analysis. Transmission electron microscopy-energy dispersive spectroscopic analysis confirmed the presence of the Pb(II) precipitates and that Pb(II) could be sequestered both extracellularly and intracellularly. Incubation with B. subtilis DBM significantly decreased the amount of the weak-acid-soluble Pb fraction in a heavy-metal-contaminated soil, resulting in a reduction in Pb bioavailability, but increased the amount of its organic-matter-bound fraction by 71%. The ability of B. subtilis DBM to reduce the bioavailability of soil Pb makes it potentially useful for bacteria-assisted phytostabilization of multi-heavy-metal-contaminated soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2014.07.015 | DOI Listing |
J Anim Physiol Anim Nutr (Berl)
September 2024
National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
Fishmeal substitution with sustainable feed sources is highly essential towards sustainable production. This study aimed to investigate the effects of substituting fishmeal (FM) with Daphnia magna biomass meal (DBM) or zooplankton biomass meal (ZBM) on growth performance, liver and intestinal histology, gut bacterial abundance and stress tolerance of Nile tilapia, Oreochromis niloticus, fry. Nile tilapia fry (0.
View Article and Find Full Text PDFCurr Microbiol
May 2024
Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 160 00, Prague, Czech Republic.
The fungus Monascus is a well-known source of secondary metabolites with interesting pharmaceutical and nutraceutical applications. In particular, Monascus pigments possess a wide range of biological activities (e.g.
View Article and Find Full Text PDFToxicol In Vitro
June 2020
Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60020-181 Fortaleza, CE, Brazil. Electronic address:
Soybean toxin (SBTX) is a protein isolated from soybean seeds and composed of two polypeptide subunits (17 and 27 kDa). SBTX has in vitro activity against phytopathogenic fungi such as Cercospora sojina, Aspergillus niger, and Penicillium herguei, and yeasts like Candida albicans, C. parapsilosis, Kluyveromyces marxiannus, and Pichia membranifaciens.
View Article and Find Full Text PDFJ Environ Sci (China)
April 2019
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China.
The effects of interaction between Bacillus subtilis DBM and soil minerals on Cu(II) and Pb(II) adsorption were investigated. After combination with DBM, the Cu(II) and Pb(II) adsorption capacities of kaolinite and goethite improved compared with the application of the minerals independently. The modeling results of potentiometric titration data proved that the site concentrations of kaolinite and goethite increased by 80% and 30%, respectively after combination with DBM.
View Article and Find Full Text PDFJ Environ Sci (China)
October 2014
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
Mechanisms of soil Pb immobilization by Bacillus subtilis DBM, a bacterial strain isolated from a heavy-metal-contaminated soil, were investigated. Adsorption and desorption experiments with living bacterial cells as well as dead cells revealed that both extracellular adsorption and intracellular accumulation were involved in the Pb(2+) removal from the liquid phase. Of the sequestered Pb(II), 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!