The important human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]) produces a hyaluronic acid (HA) capsule that plays critical roles in immune evasion. Previous studies showed that the hasABC operon encoding the capsule biosynthesis enzymes is under the control of a single promoter, P1, which is negatively regulated by the two-component regulatory system CovR/S. In this work, we characterize the sequence upstream of P1 and identify a novel regulatory region controlling transcription of the capsule biosynthesis operon in the M1 serotype strain MGAS2221. This region consists of a promoter, P2, which initiates transcription of a novel small RNA, HasS, an intrinsic transcriptional terminator that inefficiently terminates HasS, permitting read-through transcription of hasABC, and a putative promoter which lies upstream of P2. Electrophoretic mobility shift assays, quantitative reverse transcription-PCR, and transcriptional reporter data identified CovR as a negative regulator of P2. We found that the P1 and P2 promoters are completely repressed by CovR, and capsule expression is regulated by the putative promoter upstream of P2. Deletion of hasS or of the terminator eliminates CovR-binding sequences, relieving repression and increasing read-through, hasA transcription, and capsule production. Sequence analysis of 44 GAS genomes revealed a high level of polymorphism in the HasS sequence region. Most of the HasS variations were located in the terminator sequences, suggesting that this region is under strong selective pressure. We discovered that the terminator deletion mutant is highly resistant to neutrophil-mediated killing and is significantly more virulent in a mouse model of GAS invasive disease than the wild-type strain. Together, these results are consistent with the naturally occurring mutations in this region modulating GAS virulence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249290PMC
http://dx.doi.org/10.1128/IAI.02035-14DOI Listing

Publication Analysis

Top Keywords

capsule biosynthesis
12
streptococcus pyogenes
8
hyaluronic acid
8
acid capsule
8
biosynthesis operon
8
transcription capsule
8
putative promoter
8
capsule
6
transcription
5
region
5

Similar Publications

Background/objectives: GCL1815 is a lactic acid bacterium thought to activate dendritic cells. This randomized, placebo-controlled, double-blind study aimed to evaluate the effects of GCL1815 on human dendritic cells and the onset of the common cold.

Methods: Two hundred participants were divided into two groups and took capsules containing either six billion GCL1815 cells or placebo for 8 weeks.

View Article and Find Full Text PDF

Probiotics are gaining recognition as a viable strategy for mitigating cardiovascular risk factors. Specifically, recent studies highlight their potential benefits in managing cholesterol levels, blood pressure, and inflammation, which are critical components in the prevention of cardiovascular diseases (CVD). This comprehensive review aims to elucidate the impact of probiotic consumption on major cardiovascular risk factors, including individuals with hypertension, type II diabetes mellitus, metabolic syndrome, hypercholesterolemia, and in secondary prevention in coronary artery disease.

View Article and Find Full Text PDF

JAG1/Notch Pathway Inhibition Induces Ferroptosis and Promotes Cataractogenesis.

Int J Mol Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.

Cataracts remain the leading cause of visual impairment worldwide, yet the underlying molecular mechanisms, particularly in age-related cataracts (ARCs), are not fully understood. The Notch signaling pathway, known for its critical role in various degenerative diseases, may also contribute to ARC pathogenesis, although its specific involvement is unclear. This study investigates the role of Notch signaling in regulating ferroptosis in lens epithelial cells (LECs) and its impact on ARC progression.

View Article and Find Full Text PDF

Microbes have been shown to adapt to stressful or even lethal conditions through displaying genome plasticity. However, how bacteria utilize the ability of genomic plasticity to deal with high antimony (Sb) stress has remained unclear. In this study, the spontaneous mutant strain SMAs-55 of sp.

View Article and Find Full Text PDF

Pt@ZnCoO Microspheres as Peroxidase Mimics: Enhanced Catalytic Activity and Application for L-Cysteine Detection.

Molecules

January 2025

Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.

Compared to natural enzymes, the development of efficient artificial simulated enzymes, such as those based on bimetallic materials with high catalytic activity and good stability, is an important way until now. Herein, we employed ZnCoO microspheres as carriers to synthesize Pt-doped composites with different amounts using a one-pot method. The morphology and structure of the synthesized materials were characterized using XRD, SEM, BET, FT-IR, XPS, and Zeta potential techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!