Background Aims: Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Developing effective protocols for the administration of mesenchymal stromal cells (MSCs) is a promising therapeutic strategy to treat TBI. It is important to develop alternatives to direct parenchymal injection at the injury site because direct injection is an expensive and invasive technique. Subarachnoid transplantation, a minimally invasive and low-risk procedure, may be an important and clinically applicable strategy. The aim of this study was to test the therapeutic effect of subarachnoid administration of MSCs on functional outcome 2 months after an experimental TBI in rats.
Methods: Two months after TBI, 30 female Wistar rats were divided into 3 groups (n = 10 in each group): sham, MSC (received 2 × 10(6) MSCs) and saline (received only saline) groups. Neurological function, brain and spinal cords samples and cerebrospinal fluid were studied.
Results: No significant differences were found in neurological evaluation and after histological analysis; differences in the expression of neurotrophins were present but were not statistically significant. MSCs survived in the host tissue, and some expressed neural markers.
Conclusions: Similar to direct parenchymal injections, transplanted MSCs survive, migrate to the injury cavity and differentiate into mature neural cell types for at least 6 months after engraftment. These results open the possibility that MSC administration through subarachnoid administration may be a treatment for the consequences of TBI. The transplantation technique and cell number should be adjusted to obtain functional outcome and neurotrophin production differences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcyt.2014.07.007 | DOI Listing |
Neurosurg Rev
January 2025
Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran.
Traumatic Brain Injury (TBI) is a devastating cause of death and disability. Outcomes following TBI have been extensively studied; however, less attention has been given to identifying characteristics of individuals who have a favorable outcome following severe TBI. We conducted a retrospective analysis of a database containing information on TBI patients admitted to a level 1 trauma center between 2015 and 2021.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
Introduction: Brain damage caused by subarachnoid hemorrhage (SAH) currently lacks effective treatment, leading to stagnation in the improvement of functional outcomes for decades. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells (MSC), which effectively attenuate neuronal apoptosis and inflammation in neurological diseases. Due to the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a novel approach for targeting the brain.
View Article and Find Full Text PDFBMC Anesthesiol
January 2025
Department of Anesthesiology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China.
Background: Subarachnoid anesthesia is the primary anesthetic method for elective cesarean section surgery, characterized by rapidly taking effect and reliable analgesia. However, subarachnoid anesthesia is prone to cause a high block level, resulting in a high incidence of maternal hypotension. How to reduce the incidence of maternal hypotension under subarachnoid anesthesia is a practical problem that needs to be solved urgently in clinical practice.
View Article and Find Full Text PDFMol Med Rep
March 2025
State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China.
Subarachnoid hemorrhage (SAH), a prevalent cerebrovascular condition associated with a high mortality rate, frequently results in neuronal apoptosis and an unfavorable prognosis. The adjunctive use of traditional Chinese medicine (TCM) with surgical interventions exerts a therapeutic impact on SAH, potentially by facilitating apoptosis. However, the mechanism by which TCM mediates apoptosis following SAH remains unclear.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
Nimodipine (NIMO) is used to treat ischemic nerve injury from subarachnoid hemorrhage (SAH), but its low aqueous solubility limits clinical safety and bioavailability. This study aims to improve NIMO's solubility by preparing inclusion complexes with sulfobutylether-β-cyclodextrin (SBE-β-CD), reducing the limitations of Nimotop injection, including vascular irritation, toxicity, and poor dilution stability. The NIMO-SBE-β-CD inclusion complex (NIMO-CD) was characterized in both liquid and solid states through phase solubility studies and methods including DSC, FT-IR, XRD, and SEM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!