Background: Variable loops 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 perform two key functions: ensuring envelope trimer entry competence and shielding against neutralizing antibodies. While preserving entry functionality would suggest a high need for V1V2 sequence optimization and conservation, shielding efficacy is known to depend on a high flexibility of V1V2 giving rise to its substantial sequence variability. How entry competence of the trimer is maintained despite the continuous emergence of antibody escape mutations within V1V2 has not been resolved. Since HIV cell-cell transmission is considered a highly effective means of virus dissemination, we investigated whether cell-cell transmission may serve to enhance infectivity of V1V2 variants with debilitated free virus entry.
Results: In a detailed comparison of wt and V1V2 mutant envelopes, V1V2 proved to be a key factor in ascertaining free virus infectivity, with V1V2 mutants displaying significantly reduced trimer integrity. Despite these defects, cell-cell transmission was able to partially rescue infectivity of V1V2 mutant viruses. We identified two regions, encompassing amino acids 156 to 160 (targeted by broadly neutralizing antibodies) and 175 to 180 (encompassing the α4β7 binding site) which were particularly prone to free virus infectivity loss upon mutation but maintained infectivity in cell-cell transmission. Of note, V1V2 antibody shielding proved important during both free virus infection and cell-cell transmission.
Conclusions: Based on our data we propose a model for V1V2 evolution that centers on cell-cell transmission as a salvage pathway for virus replication. Escape from antibody neutralization may frequently result in V1V2 mutations that reduce free virus infectivity. Cell-cell transmission could provide these escape viruses with sufficiently high replication levels that enable selection of compensatory mutations, thereby restoring free virus infectivity while ensuring antibody escape. Thus, our study highlights the need to factor in cell-cell transmission when considering neutralization escape pathways of HIV-1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190450 | PMC |
http://dx.doi.org/10.1186/s12977-014-0075-y | DOI Listing |
mBio
December 2024
Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
Unlabelled: A novel Hendra virus (HeV) genotype (HeV genotype 2 [HeV-g2]) was recently isolated from a deceased horse, revealing high-sequence conservation and antigenic similarities with the prototypic strain, HeV-g1. As the receptor-binding (G) and fusion (F) glycoproteins of HeV are essential for mediating viral entry, functional characterization of emerging HeV genotypic variants is key to understanding viral entry mechanisms and broader virus-host co-evolution. We first confirmed that HeV-g2 and HeV-g1 glycoproteins share a close phylogenetic relationship, underscoring HeV-g2's relevance to global health.
View Article and Find Full Text PDFSci Immunol
December 2024
Africa Health Research Institute, Durban, South Africa.
() is a bacterial pathogen that has evolved in humans, and its interactions with the host are complex and best studied in humans. Myriad immune pathways are involved in infection control, granuloma formation, and progression to tuberculosis (TB) disease. Inflammatory cells, such as macrophages, neutrophils, conventional and unconventional T cells, B cells, NK cells, and innate lymphoid cells, interact via cytokines, cell-cell communication, and eicosanoid signaling to contain or eliminate infection but can alternatively mediate pathological changes required for pathogen transmission.
View Article and Find Full Text PDFFront Immunol
December 2024
Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy.
Introduction: The ongoing emergence of SARS-CoV-2 variants poses significant challenges to existing therapeutics. The spike (S) glycoprotein is central to both viral entry and cell-to-cell transmission via syncytia formation, a process that confers resistance to neutralizing antibodies. The mechanisms underlying this resistance, particularly in relation to spike-mediated fusion, remain poorly understood.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy.
The increase in ambient temperature is responsible for a behavioral, physiological and metabolic responses known as heat stress, which affects dairy cows' general well-being, health, reproduction, and productivity. Focusing on the functioning of the mammary gland, attention has been recently paid to a new method of cell-cell communication mediated by extracellular vesicles, which with their cargo can affect the target cells' phenotypic traits, behavior, and biological functions. This study investigated whether the small extracellular vesicles (sEVs) isolated from milk of heat-stressed Holstein Friesian (H) and Brown Swiss (B) cows affect the cellular response of a bovine mammary epithelial cell line (BME-UV1).
View Article and Find Full Text PDFSci Adv
December 2024
Department of Chemistry, Texas A&M University, College Station, TX 77845-3255, USA.
Understanding the dynamic spatial and temporal release of neurotransmitters can help resolve long-standing questions related to chemical modulation of neurological circuits. Dopamine modulates function in a range of physiological processes and is key to transmission in addiction and neurological disorders. Studies at subcellular scales promise to help develop a broader understanding of dopamine release, diffusion, and receptor activation and how these processes lead to functional outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!