Isolation of plasmodesmata from Arabidopsis suspension culture cells.

Methods Mol Biol

Laboratory of Membrane Biogenesis, CNRS UMR5200, University of Bordeaux, Campus INRA de Bordeaux, 71 avenue E. Bourlaux, 33883, Villenave d'Ornon Cedex, France.

Published: June 2015

Due to their position firmly anchored within the plant cell wall, plasmodesmata (PD) are notoriously difficult to isolate from plant tissue. Yet, getting access to isolated PD represents the most straightforward strategy for the identification of their molecular components. Proteomic and lipidomic analyses of such PD fractions have provided and will continue to provide critical information on the functional and structural elements that define these membranous nano-pores. Here, we describe a two-step simple purification procedure that allows isolation of pure PD-derived membranes from Arabidopsis suspension cells. The first step of this procedure consists in isolating cell wall fragments containing intact PD while free of contamination from other cellular compartments. The second step relies on an enzymatic degradation of the wall matrix and the subsequent release of "free" PD. Isolated PD membranes provide a suitable starting material for the analysis of PD-associated proteins and lipids.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-1523-1_5DOI Listing

Publication Analysis

Top Keywords

arabidopsis suspension
8
cell wall
8
isolation plasmodesmata
4
plasmodesmata arabidopsis
4
suspension culture
4
culture cells
4
cells position
4
position firmly
4
firmly anchored
4
anchored plant
4

Similar Publications

Impact of Gene Knockout on Cell Aggregation in Suspension Culture.

BioTech (Basel)

January 2025

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk 630090, Russia.

The development of efficient producers of recombinant pharmaceuticals based on plant cell suspension cultures is a pressing challenge in modern applied science. A primary limitation of plant cell cultures is their relatively low yield of the target protein. One strategy to enhance culture productivity involves reducing cell aggregation.

View Article and Find Full Text PDF

In eukaryotes, Target of Rapamycin (TOR), a conserved protein sensor kinase, integrates diverse environmental cues, including growth factor signals, energy availability, and nutritional status, to direct cell growth. In plants, TOR is activated by light and sugars and regulates a wide range of cellular processes, including protein synthesis and metabolism. Fatty acid synthesis is key to membrane biogenesis that is required for cell growth.

View Article and Find Full Text PDF

Valsa canker, caused by fungal pathogens in Valsa species, is a fungal disease of apple and pear growing in China and even in Asia. Malectin-like kinases play crucial roles in plant recognition of the pathogen-induced signals and subsequent activation of partially host immune responses. However, the role of MEDOS1 (MDS1), a Malectin-like kinase, in plant immunity has not yet been extensively explored.

View Article and Find Full Text PDF

Root metabolites regulated by FERONIA promote phosphorus-solubilizing rhizobacteria enrichment induced by Arabidopsis thaliana coping with phosphorus deficiency.

Microbiol Res

March 2025

College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China. Electronic address:

The recruitment of the phosphorus-solubilizing rhizobacteria plays an important role in response to phosphorus deficiency. Through the treatments of Arabidopsis thaliana (Col-0) and the FERONIA (FER) functional deficient mutants (fer-4 and fer-5) with the soil suspension in various phosphorus conditions, we discovered that FER could promote phosphorus-solubilizing rhizobacteria enrichment to rescue the defective plant during phosphorus deficiency. The amplicon sequencing data reflected that the phosphorus-solubilizing rhizobacterial genus Alcaligenes was significantly enriched of Col-0 than fer-4 in low phosphorus conditions.

View Article and Find Full Text PDF

Callus and cell suspension culture techniques are valuable tools in plant biotechnology and are widely used in fundamental and applied research. For studies in callus and cell suspension cultures to be relevant, it is essential to know if the underlying biochemistry is similar to intact plants. This study examined the expression of core circadian genes in Arabidopsis callus from the cell suspension named AT2 and found that the circadian rhythms were impaired.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!