The prokaryotic lysine-specific permease (LysP) belongs to the amino acid-polyamine-organocation (APC) transporter superfamily. In the cell, members of this family are responsible for the uptake and recycling of nutrients, for the maintenance of a constant internal ion concentration and for cell volume regulation. The detailed mechanism of substrate selectivity and transport of L-lysine by LysP is not understood. A high-resolution crystal structure would enormously facilitate such an understanding. To this end, LysP from Pseudomonas aeruginosa was recombinantly expressed in Escherichia coli and purified to near homogeneity by immobilized metal ion-affinity chromatography (IMAC) and size-exclusion chromatography (SEC). Hexagonal- and rod-shaped crystals were obtained in the presence of L-lysine and the L-lysine analogue L-4-thialysine by vapour diffusion and diffracted to 7.5 Å resolution. The diffraction data were indexed in space group P21, with unit-cell parameters a = 169.53, b = 169.53, c = 290.13 Å, γ = 120°.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188080 | PMC |
http://dx.doi.org/10.1107/S2053230X14017865 | DOI Listing |
Nat Commun
January 2025
Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
Glucose deprivation, a hallmark of the tumor microenvironment, compels tumor cells to seek alternative energy sources for survival and growth. Here, we show that glucose deprivation upregulates the expression of mitochondrial-cytochrome c oxidase II (MT-CO2), a subunit essential for the respiratory chain complex IV, in facilitating glutaminolysis and sustaining tumor cell survival. Mechanistically, glucose deprivation activates Ras signaling to enhance MT-CO2 transcription and inhibits IGF2BP3, an RNA-binding protein, to stabilize MT-CO2 mRNA.
View Article and Find Full Text PDFJ Org Chem
November 2024
Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China.
A series of versatile 4-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)pyridine intermediates have been developed to efficiently produce biaryls, amines, ethers, and thioethers. These hydrolysis-stable ether intermediates exhibit reactivity toward electron-donating groups and nucleophiles in cross-coupling and nucleophilic substitution reactions while surpassing the stability of corresponding aryl halides. In comparison to conventional coupling methods, this protocol offers an alternative pathway for accessing natural product and drug-like compounds without the need for metal catalysts.
View Article and Find Full Text PDFCommun Biol
October 2024
State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China.
Colonizing in the gastrointestinal tract, Escherichia coli confronts diverse acidic challenges and evolves intricate acid resistance strategies for its survival. The lysine-mediated decarboxylation (Cad) system, featuring lysine decarboxylase CadA, lysine/cadaverine antiporter CadB, and transcriptional activator CadC, plays a crucial role in E. coli's adaptation to moderate acidic stress.
View Article and Find Full Text PDFNat Commun
July 2024
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
Memory engrams are a subset of learning activated neurons critical for memory recall, consolidation, extinction and separation. While the transcriptional profile of engrams after learning suggests profound neural changes underlying plasticity and memory formation, little is known about how memory engrams are selected and allocated. As epigenetic factors suppress memory formation, we developed a CRISPR screening in the hippocampus to search for factors controlling engram formation.
View Article and Find Full Text PDFCancer Immunol Immunother
March 2024
Laboratory of Metabolites and Proteins in Translational Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!