Background: Mandibuloacral dysplasia type A (MADA) is a rare autosomal recessive disorder, characterized by growth retardation, skeletal abnormality with progressive osteolysis of the distal phalanges and clavicles, craniofacial anomalies with mandibular hypoplasia, lipodystrophy and mottled cutaneous pigmentation. Some patients may show progeroid features. MADA with partial lipodystrophy, more marked acral, can be caused by homozygous or compound heterozygous mutation in the gene encoding lamin A and lamin C (LMNA). MADA and Hutchinson-Gilford progeria syndrome are caused by the same gene and may represent a single disorder with varying degrees of severity. MAD patients characterized by generalized lipodystrophy (type B) affecting the face as well as extremities and severe progressive glomerulopathy present heterozygous compound mutations in the ZMPSTE24 gene.

Cases Presentations: We described a rare pedigree from Southern China, among them all three children presented with phenotypes of MADA associated progeria. The two elder sisters had developed severe mandibular hypoplasia associated progeria since the age of 1 year. The eldest sister showed a progressive osteolysis. The youngest son of 10 months showed severer lesions than those of his sisters at the same age, and presented possible muscle damage, and his symptoms progressed gradually. Three genes mutations including LMNA, ZMPSTE24 and BANF1 were tested in the family. LMNA gene sequencing revealed a homozygous missense mutation, c.1579C > T, p.R527C for all three siblings, and heterozygous mutations for their parents, whereas no mutations of ZMPSTE24 and BANF1 genes was detected among them.

Conclusions: The same homozygous mutation of c.1579C > T of LMNA gene led to MADA associated progeria for the present family. The course of osteolysis for MADA is progressive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287574PMC
http://dx.doi.org/10.1186/1471-2431-14-256DOI Listing

Publication Analysis

Top Keywords

associated progeria
12
mandibuloacral dysplasia
8
dysplasia type
8
caused homozygous
8
southern china
8
progressive osteolysis
8
mandibular hypoplasia
8
mutations zmpste24
8
mada associated
8
zmpste24 banf1
8

Similar Publications

Advances of NAT10 in diseases: insights from dual properties as protein and RNA acetyltransferase.

Cell Biol Toxicol

December 2024

Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.

N-acetyltransferase 10 (NAT10) is a member of the Gcn5-related N-acetyltransferase (GNAT) family and it plays a crucial role in various cellular processes, such as regulation of cell mitosis, post-DNA damage response, autophagy and apoptosis regulation, ribosome biogenesis, RNA modification, and other related pathways through its intrinsic protein acetyltransferase and RNA acetyltransferase activities. Moreover, NAT10 is closely associated with the pathogenesis of tumors, Hutchinson-Gilford progeria syndrome (HGPS), systemic lupus erythematosus, pulmonary fibrosis, depression and host-pathogen interactions. In recent years, mRNA acetylation has emerged as a prominent focus of research due to its pivotal role in regulating RNA stability and translation.

View Article and Find Full Text PDF

Brain organoids offer unprecedented insights into brain development and disease modeling and hold promise for drug screening. Significant hindrances, however, are morphological and cellular heterogeneity, inter-organoid size differences, cellular stress, and poor reproducibility. Here, we describe a method that reproducibly generates thousands of organoids across multiple hiPSC lines.

View Article and Find Full Text PDF

Hutchinson-Gilford Progeria syndrome (HGPS) serves as a prominent model for Progeroid syndromes, a group of rare genetic disorders characterized by accelerated aging. This review explores the genetic basis, clinical presentation, and complications of HGPS. HGPS is caused by mutations in the LMNA gene, resulting in the production of a defective structural protein, prelamin A.

View Article and Find Full Text PDF

MAM-STAT3-Driven Mitochondrial Ca Upregulation Contributes to Immunosenescence in Type A Mandibuloacral Dysplasia Patients.

Adv Sci (Weinh)

December 2024

Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China.

Individuals with homozygous laminA/C p.R527C mutations manifest a severe form of Mandibuloacral dysplasia-(MAD) and exhibit overlapping progeroid symptoms, for which the underlying molecular pathology remains unknown. Herein, it is shown that MAD patients achieved inflammaging with different pro-inflammatory cytokines compared to progeria-(HGPS) patient.

View Article and Find Full Text PDF

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging, and individuals with HGPS seldom live beyond their mid-teens. The syndrome is commonly caused by a point mutation in the LMNA gene which codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The mutation causing HGPS leads to production of a truncated, farnesylated form of lamin A referred to as "progerin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!