TiO(2) nanoparticles were used in this research as an inorganic UV absorber for preparation of a sunscreen that ensures optically transparent films with adequate SPF. TiO(2) nanoparticles in rutile crystal form, produced in Cinkarna Celje, were used in this research. The elementary principle of the nanograde TiO(2) production is the sulphate synthesis process, which is upgraded for the synthesis of final nano product. TiO(2) nanoparticles were subsequently surface modified by coating with sodium silicate as the source of silica. The resulting silica coated TiO(2) nanoparticles were examined by scanning (SEM) and transmission electron microscopy (TEM). Uniform particles distribution and homogeneous amorphous coatings, formed in heterogeneous nucleation of silica molecules on the surface of TiO(2) nanoparticles, were observed. Sun-protection factor (SPF) of 28 was determined for sunscreen with incorporated 9.0 wt. % TiO(2) nanoparticles, surface treated with 5.0 wt. % silica according to the "Method for the In Vitro Determination of UVA Protection Provided by Sunscreen Products".

Download full-text PDF

Source

Publication Analysis

Top Keywords

tio2 nanoparticles
24
surface treated
8
nanoparticles inorganic
8
nanoparticles
7
tio2
7
surface
4
treated titanium
4
titanium dioxide
4
dioxide nanoparticles
4
inorganic filters
4

Similar Publications

Flexible sweat sensors play a crucial role in health monitoring and disease prevention by enabling real-time, non-invasive assessment of human physiological conditions. Sweat contains a variety of biomarkers, offering valuable insights into an individual's health status. In this study, we developed an advanced flexible electrochemical sensor featuring reduced graphene oxide (rGO)-based electrodes, modified with a composite material comprising nitrogen and sulfur co-doped holey graphene (HG) and MXene, with in-situ-grown TiO nanoparticles on the MXene.

View Article and Find Full Text PDF

Exposure of lung epithelia to aerosols is omnipresent. Chronic exposure to polluted air is a significant factor in the development of pulmonary diseases, which are among the top global causes of death, including COVID-19, chronic obstructive pulmonary disease, lung cancer, and tuberculosis. As efforts to prevent and treat lung diseases increase, the development of pulmonary drug delivery systems has become a major area of interest.

View Article and Find Full Text PDF

Introduction: Current intestinal models lack the mechanical forces present in the physiological environment, limiting their reliability for nanotoxicology studies. Here, we developed an enhanced Caco-2/HT29-MTX-E12 co-culture model incorporating orbital mechanical stimulation to better replicate intestinal conditions and investigate nanoparticle interactions.

Methods: We established co-cultures under static and dynamic conditions, evaluating their development through multiple approaches including barrier integrity measurements, gene expression analysis, and confocal microscopy.

View Article and Find Full Text PDF

This research investigates the microbial inactivation potential of ternary TiO-CuO-chitosan nanocomposites (TCC NCs) applied as surface coatings on cowhide leather. Initially, bare TiO nanoparticles (NPs) and binary TiO-CuO (TC) NCs, with varying CuO NPs content, were prepared using an sol-gel method. These binary TC NCs were then modified with chitosan at varying weight percentages (2%, 4%, 6%, and 8%).

View Article and Find Full Text PDF

Pickering emulsions (PEs) have demonstrated significant potential in various fields, including catalysis, biomedical applications, and food science, with notable advancements in wastewater treatment through photocatalysis. This study explores the development and application of TiO-poly(-isopropylacrylamide) (pNIPAm) composite gels as a novel framework for photocatalytic wastewater remediation. The research focuses on overcoming challenges associated with conventional nanoparticle-based photocatalytic systems, such as agglomeration and inefficient recovery of particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!