Background: Chemical matricectomy with sodium hydroxide is a method being used successfully in the treatment of ingrown toenail.
Objective: In this study, it was aimed to evaluate long-term recurrence rates after chemical matricectomy using sodium hydroxide application of different durations.
Materials And Methods: Two hundred two patients with ingrown nail edges were treated with either 1-minute (Group 1) or 2-minute (Group 2) applications of sodium hydroxide matricectomy. All patients were followed for at least 2 years.
Results: Chemical matricectomy with sodium hydroxide was applied to a total of 585 nail edges of 202 cases. The overall recurrence rates in Group 1 and Group 2 were 6.4% and 7.1%, respectively, during the average 7.5-year follow-up period. No statistically significant differences were detected in terms of recurrence between the 2 groups (p = .73).
Conclusion: Chemical matricectomy with sodium hydroxide is an easy method in the treatment of ingrown nails, with low morbidity and high success rates. There was no difference between 1-minute and 2-minute applications in terms of recurrence during the long-term follow-up. Chemical matricectomy with 1-minute application of sodium hydroxide showed high success in terms of long-term follow-up results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/DSS.0000000000000136 | DOI Listing |
ACS Omega
December 2024
Postgraduate Study in Materials Science and Engineering, Universidade Federal de Sergipe-UFS, Rosa Elze, São Cristóvão - SE 49100-000, Brasil.
The conservation of soil, a finite natural resource, demands effective measures. Within this context, the instability of soil masses on steep slopes poses significant risks to human life and environmental infrastructure, highlighting the need for developing erosion control strategies rooted in soil bioengineering principles. The objective of this study was to investigate the mechanical properties of fibers subjected to biodegradation and treated with sodium hydroxide (NaOH) for geotextile manufacturing.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, ENSET, University of Douala, P.O. Box: 1872, Douala, Cameroon.
Carica papaya pseudostems are widely available as biomass waste in Cameroon. These agricultural wastes can be effectively used as natural fibers in the manufacture of biocomposites. In this study Carica papaya fibers were extracted from papaya pseudostems by retting with water and an alkaline sodium hydroxide (NaOH) solution at different concentrations (2.
View Article and Find Full Text PDFJ Mass Spectrom
January 2025
Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
In our previous work, the sodiation of melittin, cytochrome c, and ubiquitin in a 1 mM NaOH water/methanol solution was studied by electrospray mass spectrometry. It was suggested that the α-helix is more resistant to sodiation than the β-sheet. In this study, sodiation of enhanced green fluorescent protein (EGFP) composed of a β-barrel was studied in 1% CHCOOH (AcOH) or 1 mM NaOH water/methanol solution by electrospray mass spectrometry.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemical Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia.
This work aimed to extract silica from combination of rice husk (RH and Rice straw (RS) by optimizing the ash digesting process parameters with the aid of response surface methodology (RSM). The effects of three independent ash digestion process factors like sodium hydroxide concentration (1-3 M), temperature (60-120 °C) and time (1-3 h), for silica production from the mixture of rice husk (RH) and rice straw (RS) were studied. A quadratic model was used to correlate the interaction effects of the independent variables for maximum silica production at the optimum process parameters by employing central composite design (CCD) with RSM.
View Article and Find Full Text PDFSci Rep
January 2025
Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
This study explores the mechanical properties of geopolymer mortars incorporating ceramic and glass powders sourced from industrial waste. A Box-Behnken design was employed to assess the effects of ceramic waste powder (CWP) content, alkaline activator ratio, solution-to-binder (S: B) ratio, and oven curing duration on the mortar's performance. Compressive strengths were measured at 3 and 28 days, and regression models were developed to predict these outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!