A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS. | LitMetric

Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS.

Nanoscale

Department of Materials Science and Engineering & CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, China.

Published: November 2014

We detail a facile method for enhancing the Raman signals of as-grown graphene on Cu foils by depositing gold nanoislands (Au Nis) onto the surface of graphene. It is found that an enhancement of up to 49 fold in the graphene Raman signal has been achieved by depositing a 4 nm thick Au film. The enhancement is considered to be related to the coupling between graphene and the plasmon modes of Au Nis, as confirmed by the finite element simulations. The plasmonic effect of the Au/graphene/Cu hybrid platform leads to a strong absorption at the resonant wavelength whose position shifts from visible light (640 nm) to near-infrared (1085 nm) when the thickness of Au films is increased from 2 nm to 18 nm. Finally, we demonstrate that hybrid substrates are reliable surface-enhanced Raman scattering (SERS) systems, showing an enhancement factor of ∼10(6) for dye molecules Rhodamine B and Rhodamine 6G with uniform and stable response and a detection limit of as low as 0.1 nM for Sudan III and Sudan IV.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr04225eDOI Listing

Publication Analysis

Top Keywords

raman scattering
8
graphene
5
plasmonic-enhanced raman
4
scattering graphene
4
graphene growth
4
growth substrates
4
substrates application
4
application sers
4
sers detail
4
detail facile
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!