The metabolism of the widely used neonicotinoid insecticide acetamiprid (ACE) has been extensively studied in plants, animals, soils, and microbes. However, hydration of the N-cyanoimine group in ACE to the N-carbamoylimine derivate (IM-1-2) by purified microbes, the enzyme responsible for this biotransformation, and further degradation of IM-1-2 have not been studied. The present study used liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy to determine that the nitrogen-fixing bacterium Ensifer meliloti CGMCC 7333 transforms ACE to IM-1-2. CGMCC 7333 cells degraded 65.1% of ACE in 96 h, with a half-life of 2.6 days. Escherichia coli Rosetta (DE3) overexpressing the nitrile hydratase (NHase) from CGMCC 7333 and purified NHase converted ACE to IM-1-2 with degradation ratios of 97.1% in 100 min and 93.9% in 120 min, respectively. Interestingly, IM-1-2 was not further degraded by CGMCC 7333, whereas it was spontaneously hydrolyzed at the N-carbamoylimine group to the derivate ACE-NH, which was further converted to the derivative ACE-NH2. Then, ACE-NH2 was cleaved to the major metabolite IM-1-4. IM-1-2 showed significantly lower insecticidal activity than ACE against the aphid Aphis craccivora Koch. The present findings will improve the understanding of the environmental fate of ACE and the corresponding enzymatic mechanisms of degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf503557t | DOI Listing |
J Environ Sci Health B
March 2021
Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China.
Flonicamid is a novel, selective, systemic pyridinecarboxamide insecticide that effectively controls hemipterous pests. Sulfoxaflor, a sulfoximine insecticide, effectively controls many sap-feeding insect pests. CGMCC 7333 transforms flonicamid into -(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM).
View Article and Find Full Text PDFInt Microbiol
May 2020
Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
An N-fixing bacterium, Ensifer meliloti CGMCC 7333, has been reported to degrade the cyano-containing neonicotinoid insecticides acetamiprid and thiacloprid using a nitrile hydratase (NHase). Here, the bioconversion of indole-3-acetonitrile (IAN) by E. meliloti, Escherichia coli overexpressing the NHase, and purified recombinant NHase was studied.
View Article and Find Full Text PDFJ Agric Food Chem
October 2014
Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
The metabolism of the widely used neonicotinoid insecticide acetamiprid (ACE) has been extensively studied in plants, animals, soils, and microbes. However, hydration of the N-cyanoimine group in ACE to the N-carbamoylimine derivate (IM-1-2) by purified microbes, the enzyme responsible for this biotransformation, and further degradation of IM-1-2 have not been studied. The present study used liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy to determine that the nitrogen-fixing bacterium Ensifer meliloti CGMCC 7333 transforms ACE to IM-1-2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!