Improving Pain Recognition Through Better Utilisation of Temporal Information.

Int Conf Audit Vis Speech Process

Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA.

Published: January 2008

Automatically recognizing pain from video is a very useful application as it has the potential to alert carers to patients that are in discomfort who would otherwise not be able to communicate such emotion (i.e young children, patients in postoperative care etc.). In previous work [1], a "pain-no pain" system was developed which used an AAM-SVM approach to good effect. However, as with any task involving a large amount of video data, there are memory constraints that need to be adhered to and in the previous work this was compressing the temporal signal using K-means clustering in the training phase. In visual speech recognition, it is well known that the dynamics of the signal play a vital role in recognition. As pain recognition is very similar to the task of visual speech recognition (i.e. recognising visual facial actions), it is our belief that compressing the temporal signal reduces the likelihood of accurately recognising pain. In this paper, we show that by compressing the spatial signal instead of the temporal signal, we achieve better pain recognition. Our results show the importance of the temporal signal in recognizing pain, however, we do highlight some problems associated with doing this due to the randomness of a patient's facial actions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180942PMC

Publication Analysis

Top Keywords

temporal signal
16
pain recognition
12
recognizing pain
8
previous work
8
compressing temporal
8
visual speech
8
speech recognition
8
facial actions
8
recognition
6
signal
6

Similar Publications

Virtual Monitoring Technician Performance in High-Fidelity Simulations of Remote Patient Monitoring: An Exploratory Study.

Simul Healthc

January 2025

From the Department of Human Factors (H.S., Y.P., E.T., L.D.W.), Center for the Simulation, Research, and Patient Safety, Carilion Clinic, Roanoke, VA; and Health Systems and Implementation Science (S.H.P.), Virginia Tech Carilion School of Medicine, Roanoke, VA.

Introduction: Virtual Monitor Technicians (VMTs) are crucial in remotely monitoring inpatient telemetry. However, little is known about VMT workload and intratask performance changes, and their potential impact on patient safety. This exploratory study used a high-fidelity simulation aimed to evaluate VMTs' workload and performance changes over time in telemetry monitoring and identify future research directions for performance improvement.

View Article and Find Full Text PDF

Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.

View Article and Find Full Text PDF

Background: The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings.

View Article and Find Full Text PDF

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

During neuronal synaptic transmission, the exocytotic release of neurotransmitters from synaptic vesicles in the presynaptic neuron evokes a change in conductance for one or more types of ligand-gated ion channels in the postsynaptic neuron. The standard method of investigation uses electrophysiological recordings of the postsynaptic response. However, electrophysiological recordings can directly quantify the presynaptic release of neurotransmitters with high temporal resolution by measuring the membrane capacitance before and after exocytosis, as fusion of the membrane of presynaptic vesicles with the plasma membrane increases the total capacitance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!