Analysis of carious dentine using FTIR and ToF-SIMS.

Oral Health Dent Manag

Department of Cariology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Tel: +46-31-7863266; e-mail:

Published: September 2014

Apart from the Maillard reaction, other processes, such as esterification, take place in carious tissue. The aim of the present study was to analyse sound and carious dentine in terms of ester groups and their reaction with hydrazine derivate using Fourier Transform Infrared Spectroscopy (FTIR) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Carious and sound dentine from human premolars were excavated in three series (Experimental Parts I-III) and separated into inner and outer layers of carious dentine. The excavated tooth material was analysed with FTIR (Part I). Carious and sound dentine were also exposed to different chemical treatments and analysed with FTIR-Attenuated Total Reflectance (FTIR-ATR; Part II) and ToF-SIMS (Part III). The FTIR absorption spectra showed that the carious tissue contained ester groups, not detected in sound dentine. The results also indicated a higher occurrence of ester groups in the inner dental caries layer than in the outer ones. Potential binding to these ester groups by hydrazine derivative was observed after different chemical treatments with both FTIR-ATR and ToF-SIMS. The results of the present study revealed ester groups unique to the carious dentine which, after reaction with hydrazine derivative, form a covalent bond not found in sound dentine. The staining of carious unique groups would be clinically helpful in detection and prevention unnecessary removal of sound dentine.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ester groups
20
sound dentine
20
carious dentine
16
dentine
9
carious
8
carious tissue
8
reaction hydrazine
8
carious sound
8
chemical treatments
8
ftir-atr tof-sims
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!