Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.

Mar Pollut Bull

University College London, Torrington Place, London WC1E 7JE, United Kingdom.

Published: November 2014

Increasingly stringent environmental legislation on sulphur oxide emissions from the combustion of fossil fuels onboard ships (International Maritime Organization (IMO) Regulation 14) can be met by either refining the fuel to reduce sulphur content or by scrubbing the exhaust gases. Commonly used open loop marine scrubbers discharge warm acidic exhaust gas wash water into the sea, depressing its pH. The focus on this paper is on the physics and chemistry behind the disposal of acidic discharges in seawater. The IMO Marine Environment Protection Committee (MEPC 59/24/Add.1 Annex 9) requires the wash water to reach a pH greater than 6.5 at a distance of 4m from the point of discharge. We examine the engineering constraints, specifically size and number of ports, to identify the challenges of meeting regulatory compliance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2014.08.027DOI Listing

Publication Analysis

Top Keywords

acidic exhaust
8
exhaust gas
8
wash water
8
environmental policy
4
policy constraints
4
constraints acidic
4
gas scrubber
4
scrubber discharges
4
discharges ships
4
ships increasingly
4

Similar Publications

Aiming to reduce sulfur oxides emission in the atmosphere, the International Maritime Organization developed regulations on shipping that came into effect in 2020. The new rules incentivized many owners to install scrubber systems on thousands of ships. However, the overall environmental implications of scrubbers is a controversial subject, largely due to the release of acids, metals, and chemicals in the oceans and impact on marine life.

View Article and Find Full Text PDF

Integrated hepatic transcriptomics and metabolomics identify Pck1 as a key factor in the broad dysregulation induced by vehicle pollutants.

Part Fibre Toxicol

December 2024

Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA.

Background: Exposure to air pollution is associated with worldwide morbidity and mortality. Diesel exhaust (DE) emissions are important contributors which induce vascular inflammation and metabolic disturbances by unknown mechanisms. We aimed to determine molecular pathways activated by DE in the liver that could be responsible for its cardiometabolic toxicity.

View Article and Find Full Text PDF

Marine organisms are constantly exposed to complex chemical mixtures from natural and anthropogenic sources. One source that has raised concerns is the discharge water from ships equipped with exhaust gas cleaning systems, commonly known as scrubbers. During operation, ships with scrubbers discharge large volumes of scrubber water, known to adversely affect marine organisms, into the environment.

View Article and Find Full Text PDF

Organic compounds in valley fogwater in North and Mount Lebanon during COVID-19 period.

Sci Total Environ

January 2025

Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515, University of Strasbourg, F-67087 Strasbourg Cedex 3, Strasbourg, France. Electronic address:

Article Synopsis
  • Caltech's Active Strand Cloudwater collectors gathered valley fog samples from Mount and North-Lebanon in 2021 to analyze organic matter for the first time.
  • Numerous pollutants were found in the fogwater, including pesticides, phenols, acids, and persistent organic pollutants like PCBs and PAHs.
  • The study highlights strong correlations between various compounds, suggesting that vehicle exhaust and atmospheric conditions are primary sources, emphasizing the need for further research on the agricultural potential of fogwater in Lebanon.
View Article and Find Full Text PDF

Polyurethane (PUR) soft foams release malodorous and potentially toxic compounds when exposed to oxidative conditions. Current chamber test methods cannot distinguish between pre-existing volatiles and those formed during oxidation, nor can they assess the formation rates of oxidation products. We subjected PUR soft foam to oxidative treatment in a continuous air flow at 120 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!