Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Non-secosteroidal vitamin D receptor (VDR) ligands are promising candidates for many clinical applications. We recently developed novel non-secosteroidal VDR agonists based on p-carborane (an icosahedral carbon-containing boron cluster) as a hydrophobic core structure. Here, we report the design, synthesis and biological evaluation of carborane-based vitamin D analogs bearing various substituents at the diol moiety. Among the synthesized compounds, methylene derivative 31 exhibited the most potent vitamin D activity, which was comparable to that of the natural hormone, 1α,25(OH)2D3. This compound is one of the most potent non-secosteroidal VDR agonists reported to date, and is a promising lead for development of novel drug candidates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2014.09.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!