Amphotericin B (AmB) is a polyene antifungal drug and is reported to be one of a few reagents having therapeutic effects on prion diseases, that is, a delay in the appearance of clinical signs and prolongation of the survival time in an animal model. In prion diseases, glial cells have been suggested to play important roles; however, the therapeutic mechanism of AmB on prion diseases remains elusive. We have previously reported that AmB changed the expression of neurotrophic factors in microglia and astrocytes (Motoyoshi et al., 2008, Neurochem. Int. 52, 1290-1296; Motoyoshi-Yamashiro et al., 2013, ibid. 63, 93-100). These results suggested that neurotrophic factors derived from glial cells might be involved in the therapeutic mechanism of AmB. In the present study, we examined immunohistochemically the effects of AmB on the expression of neurotrophic factors in the rat brain. We found that direct injection of AmB into the striatum significantly enhanced the expression of glial cell line-derived neurotrophic factor protein. Amphotericin B also increased the expressions of CD11b and glial fibrillary acidic protein, markers of microglia and astrocytes, respectively. Moreover, expressions of the two neurotrophic factors by AmB were co-localized with the expression of CD11b or glial fibrillary acidic protein. These results suggest that AmB in vivo might also activate glial cells and induce the production of neurotrophic factors protecting neurons in prion diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221168 | PMC |
http://dx.doi.org/10.1292/jvms.14-0160 | DOI Listing |
Pigment Cell Melanoma Res
January 2025
Department of Dermatology, Faculty of Medicine, Cairo University, Giza, Egypt.
Vitiligo pathogenesis is complex. There is some evidence in support of the neurohormonal pathways involved. Although considered a nonpruritic condition, some patients may experience itching, which can occur ahead of the appearance of the patches.
View Article and Find Full Text PDFWorld J Stem Cells
January 2025
First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
Peripheral nerve injury (PNI) is a common disease that is difficult to nerve regeneration with current therapies. Fortunately, Zou demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells (BMSCs) in promoting nerve regeneration, revealing broad prospects for BMSCs transplantation in alleviating PNI. We confirmed the fact that BMSCs significantly alleviate PNI, but there are shortcomings such as low cell survival rate and immune rejection, which limit the wide application of BMSCs.
View Article and Find Full Text PDFBrain
January 2025
Medical Research Council Prion Unit, University College London Institute of Prion Diseases, London, W1W 7FF, UK.
Prions are assemblies of misfolded prion protein that cause several fatal and transmissible neurodegenerative diseases, with the most common phenotype in humans being sporadic Creutzfeldt-Jakob disease (sCJD). Aside from variation of the prion protein itself, molecular risk factors are not well understood. Prion and prion-like mechanisms are thought to underpin common neurodegenerative disorders meaning that the elucidation of mechanisms could have broad relevance.
View Article and Find Full Text PDFChronic stress profoundly affects the structure and function of the prefrontal cortex (PFC), a brain region critical for executive functions and emotional regulation. This review synthesizes current knowledge on stress-induced PFC plasticity, encompassing structural, functional, and molecular changes. We examine how chronic stress leads to dendritic atrophy, spine loss, and alterations in neuronal connectivity within the PFC, particularly affecting the medial PFC.
View Article and Find Full Text PDFIntroduction: Neurotrophic factors are widely known for their protective effect on spiral ganglion neurons (SGN) and the protection of these neurons is of great importance to optimize Cochlear Implants, which directly stimulate SGN in deaf patients. Previous studies have identified Cometin - also known as Meteroin-like - to be neuroprotective and beneficial for metabolic disorders. The aim of our study was to investigate the effects of different concentrations of recombinant human Cometin (hCometin) on SGN in regard to neuroprotection and neurite outgrowth and to evaluate its neurite guidance potential using a neurite outgrowth chamber.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!