A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protein kinase Cδ promotes proliferation and induces malignant transformation in skeletal muscle. | LitMetric

In this paper, we investigated the isoform-specific roles of certain protein kinase C (PKC) isoforms in the regulation of skeletal muscle growth. Here, we provide the first intriguing functional evidence that nPKCδ (originally described as an inhibitor of proliferation in various cells types) is a key player in promoting both in vitro and in vivo skeletal muscle growth. Recombinant overexpression of a constitutively active nPKCδ in C2C12 myoblast increased proliferation and inhibited differentiation. Conversely, overexpression of kinase-negative mutant of nPKCδ (DN-nPKCδ) markedly inhibited cell growth. Moreover, overexpression of nPKCδ also stimulated in vivo tumour growth and induced malignant transformation in immunodeficient (SCID) mice whereas that of DN-nPKCδ suppressed tumour formation. The role of nPKCδ in the formation of rhabdomyosarcoma was also investigated where recombinant overexpression of nPKCδ in human rhabdomyosarcoma RD cells also increased cell proliferation and enhanced tumour formation in mouse xenografts. The other isoforms investigated (PKCα, β, ε) exerted only minor (mostly growth-inhibitory) effects in skeletal muscle cells. Collectively, our data introduce nPKCδ as a novel growth-promoting molecule in skeletal muscles and invite further trials to exploit its therapeutic potential in the treatment of skeletal muscle malignancies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407591PMC
http://dx.doi.org/10.1111/jcmm.12452DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
protein kinase
8
malignant transformation
8
muscle growth
8
recombinant overexpression
8
overexpression npkcδ
8
tumour formation
8
npkcδ
7
skeletal
6
muscle
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!