Adipocyte dysfunction is associated with many metabolic diseases such as obesity, insulin resistance and diabetes. Previous studies found that phloretin promotes 3T3-L1 cells differentiation, but the underlying mechanisms for phloretin's effects on adipogenesis remain unclear. In this study, we demonstrated that phloretin enhanced the lipid accumulation in porcine primary adipocytes in a time-dependent manner. Furthermore, phloretin increased the utilization of glucose and nonesterified fatty acid, while it decreased the lactate output. Microarray analysis revealed that genes associated with peroxisome proliferator-activated receptor-γ (PPARγ), mitogen-activated protein kinase and insulin signaling pathways were altered in response to phloretin. We further confirmed that phloretin enhanced expression of PPARγ, CAAT enhancer binding protein-α (C/EBPα) and adipose-related genes, such as fatty acids translocase and fatty acid synthase. In addition, phloretin activated the Akt (Thr308) and extracellular signal-regulated kinase, and therefore, inactivated Akt targets protein. Wortmannin effectively blocked the effect of phloretin on Akt activity and the protein levels of PPARγ, C/EBPα and fatty acid binding protein-4 (FABP4/aP2). Oral administration of 5 or 10 mg/kg phloretin to C57BL BKS-DB mice significantly decreased the serum glucose level and improved glucose tolerance. In conclusion, phloretin promotes the adipogenesis of porcine primary preadipocytes through Akt-associated signaling pathway. These findings suggested that phloretin might be able to increase insulin sensitivity and alleviate the metabolic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2014.07.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!