Suspended particulate matter (SPM) and fine particulate matter (less than or equal to 2.5 microm: PM2.5) have generally been decreasing for the last decade in Tokyo, Japan. To elucidate the major cause of this decrease, the authors investigated the different trends of airborne particulates (both SPM and PM2.5 concentrations) by evaluating comparisons based on the location of the monitoring stations (roadside vs. ambient), days of the week (weekdays vs. Sundays), and daily fluctuation patterns (2002 vs. 2010). Hourly mean SPM and PM2.5 concentrations were obtained at four monitoring stations (two roadside stations, two ambient stations) in Tokyo, Japan. Annual mean concentrations of each day of the week and of each hour of the day from 2002 to 2010 were calculated. The results showed that (1) the daily differences in annual mean concentration decreased only at the two roadside monitoring stations; (2) the high hourly mean concentrations observed on weekdays during the daily rush hour at the two roadside monitoring stations observed in 2002 diminished in 2010; (3) the SPM concentration that decreased the most since 2002 was the PM2.5 concentration; and (4) the fluctuation of hourly concentrations during weekdays at the two roadside monitoring stations decreased. A decreasing trend of airborne particulates during the daily rush hour in Tokyo, Japan, was observed at the roadside monitoring stations on weekdays since 2002. The decreasing PM2.5 concentration resulted in this decreasing trend of airborne particulate concentrations during the daily rush hours on weekdays, which indicates fewer emissions were produced by diesel vehicles. Implications: The authors compared the trends of SPM and PM2.5 in Tokyo by location (roadside vs. ambient), days of the week (weekdays vs. Sundays), and daily fluctuation patterns (2002 vs. 2010). The high hourly mean concentrations observed at the roadside location during rush hour on weekdays in 2002 diminished in 2010. The SPM concentration that decreased during rush hour the most was the PM2.5 concentration. This significant decrease in the PM2.5 concentration resulted in the general decreasing trend of SPM concentrations during the rush hours on weekdays, which indicates fewer emissions were produced from diesel vehicles.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10962247.2014.923060DOI Listing

Publication Analysis

Top Keywords

monitoring stations
24
rush hour
20
tokyo japan
16
roadside monitoring
16
pm25 concentration
16
particulate matter
12
weekdays sundays
12
spm pm25
12
2002 2010
12
concentration decreased
12

Similar Publications

Lymphoma is the most common neoplasia in the intestine of cats. According to ACVIM consensus statement, low-grade intestinal T-cell lymphoma (LGITCL) represents a monomorphic infiltration of the lamina propria or epithelium or both of cats with small, mature, neoplastic (clonal) T lymphocytes. Despite the importance as contributing factors of inheritance and environment in the pathogenesis of LGITCL, the chronic inflammatory status plays a fundamental role.

View Article and Find Full Text PDF

The hydrodynamics, water temperature, and water quality model for the Dan River and Renzhuang Reservoir continuum were developed using field monitoring data and the Environmental Fluid Dynamics Code (EFDC). An in-situ water discharge experiment enabled the calculation of water propagation time using a simulated flood progression method and the hydrodynamics module of EFDC. Based on these model results, degradation coefficients for chemical oxygen demand, biochemical oxygen demand, nitrogen (N), phosphorus (P), fluoride, arsenic were determined, revealing significantly higher values when the wetland barrage was opening.

View Article and Find Full Text PDF

Spatiotemporal variation and transport of Cs in the Beibu Gulf.

Mar Pollut Bull

January 2025

Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China. Electronic address:

The temporal variation and transport of Cs in the Beibu Gulf (BG) are still poorly understood. Here we measured Cs concentrations in the BG water column and surface sediments during 2022. We found that Cs in the BG water column was controlled by the movement and mixing of local water masses.

View Article and Find Full Text PDF

Bacterial source characterization and allocation are imperative to watershed planning and identifying best management practices. The Spatially Explicit Load Enrichment Calculation Tool (SELECT) has been extensively utilized in watershed protection plans to evaluate the potential bacteria loads and sources in impaired watersheds. However, collecting data, compiling inputs, and spatially mapping sources can be arduous, time-intensive, expensive, and iterative until potential bacteria loads are appropriately allocated to sources based on stakeholder recommendations.

View Article and Find Full Text PDF

Evaluation of windproof and sand fixation effect of protective system in the Desert oasis ecotone of Mingsha Mountain Dunhuang.

Sci Rep

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Dunhuang Gobi Desert Ecology and Environment Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.

The Desert oasis ecotone (DOE) protects the oasis from wind and sand intrusion, thereby playing a crucial role in controlling desertification. However, there is limited knowledge about how DOE functions in windproof and sand-fixation. Therefore this study employs a three-dimensional (3D) laser scanner to monitor surface accumulation and erosion, and through field observations, collects data on wind profiles, grain size, and sand transport rates to uncover the role of DOE in aeolian sand protection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!