Stage of lactation and corresponding diets affect in situ protein degradation by dairy cows.

J Dairy Sci

CoRFiLaC, Regione Siciliana, 97100 Ragusa, Italy; Dipartimento di Scienze delle Produzioni Agrarie e Alimentari (DISPA), Agriculture Faculty, Catania University, Via Valdisavoia 5, 95123 Catania, Italy.

Published: December 2014

The influence of stage of lactation and corresponding diets on rates of protein degradation (kd) is largely unstudied. Study objectives were to measure and compare in situ ruminal kd of crude protein (CP) and estimate rumen CP escape (rumen-undegradable protein; RUP) of selected feeds by cows at 3 stages of lactation fed corresponding diets, and to determine the incubation times needed in an enzymatic in vitro procedure, using 0.2 units of Streptomyces griseus protease per percent of true CP, that predicted in situ RUP. Residue CP was measured after in situ fermentation for 4, 8, 12, 24, 36, 48, and 72 h of 5 protein sources and 3 total mixed rations, which were fed to the in situ cows. Two nonlactating (dry) cows and 2 cows each at 190 (mid) and 90 (peak) days of lactation were used. Each pair of cows was offered free-choice diets that differed in composition to meet their corresponding nutrient requirements. Diets had decreasing proportions of forages and contained (dry matter basis) 11.9, 15.1 and 16.4% CP and 54.3, 40.3 and 35.3% neutral detergent fiber, for dry, mid, and peak TMR (TMR1, TMR2, and TMR3), respectively. Intakes were 10.3, 21.4, and 23.8kg of dry matter/d, respectively. Kinetic CP fractions (extractable, potentially degradable, undegradable, or slowly degradable) were unaffected by treatment. Lag time and kd varied among feeds. The kd was faster for all feeds (0.136/h) when incubated in dry-TMR1 cows compared with mid-TMR2 (0.097/h) or peak-TMR3 (0.098/h) cows, and no differences in lag time were detected. Calculated RUP, using estimated passage rates for each cow based on intake, differed between dry-TMR1 (0.382) and mid-TMR2 (0.559) or peak-TMR3 (0.626) cows, with a tendency for mid-TMR2 to be different from peak-TMR3. Using the average kd and lag time obtained from dry-TMR1 to calculate RUP for mid-TMR2 and peak-TMR3 cows using their passage rates reduced RUP values by 6.3 and 9.5 percentage units, respectively. Except for that of herring meal, in vitro residue CP at 6, 12, and 48h of enzymatic hydrolysis was correlated (r=0.90) with in situ RUP of peak-TMR3, mid-TMR2, and dry-TMR1, respectively. Although confounded within treatments, stage of lactation, diet, and intake appeared to affect CP degradation parameters and RUP. Using kd from nonlactating cows, or the RUP calculated from them, may bias diet evaluation or ration formulation for lactating cows. In addition, enzymatic in vitro predictions of RUP should be measured using incubation times that are appropriate for lactating cows.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2014-7987DOI Listing

Publication Analysis

Top Keywords

cows
13
stage lactation
12
corresponding diets
12
lag time
12
rup
9
lactation corresponding
8
protein degradation
8
incubation times
8
enzymatic vitro
8
situ rup
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!