The Early Miocene of Kenya has yielded the remains of many important stem catarrhine species that provide a glimpse of the East African primate radiation at a time of major faunal turnover. These taxa have been subject to innumerable studies, yet there is still no consensus on their dietary niches. Here we report results of an analysis of dental microwear textures of non-cercopithecoid catarrhines from the Early Miocene of Kenya. Scanning confocal profilometry of all available molar specimens with undamaged occlusal surfaces revealed 82 individuals with unobscured antemortem microwear, representing Dendropithecus, Micropithecus, Limnopithecus, Proconsul, and Rangwapithecus. Scale-sensitive fractal analysis was used to generate microwear texture attributes for each individual, and the fossil taxa were compared with each other using conservative non-parametric statistical tests. This study revealed no discernible variation in microwear texture among the fossil taxa, which is consistent with results from a previous feature-based microwear study using smaller samples. Our results suggest that, despite their morphological differences, these taxa likely often consumed foods with similar abrasive and fracture properties. However, statistical analyses of microwear texture data indicate differences between the Miocene fossil sample and several extant anthropoid primate genera. This suggests that the African non-cercopithecoid catarrhines included in our study, despite variations in tooth form, had generalist diets that were not yet specialized to the degree of many modern taxa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhevol.2014.08.011 | DOI Listing |
J Hum Evol
January 2015
Department of Physical Therapy, High Point University, 833 Montlieu Ave, High Point, NC 27262, USA.
The Early Miocene of Kenya has yielded the remains of many important stem catarrhine species that provide a glimpse of the East African primate radiation at a time of major faunal turnover. These taxa have been subject to innumerable studies, yet there is still no consensus on their dietary niches. Here we report results of an analysis of dental microwear textures of non-cercopithecoid catarrhines from the Early Miocene of Kenya.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2007
Primate Research Institute, Kyoto University, Aichi 484-8506, Japan.
Extant African great apes and humans are thought to have diverged from each other in the Late Miocene. However, few hominoid fossils are known from Africa during this period. Here we describe a new genus of great ape (Nakalipithecus nakayamai gen.
View Article and Find Full Text PDFFolia Primatol (Basel)
January 2001
Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611-3008, USA.
The purpose of this study is to fill a gap in our knowledge of dietary and allometric determinants of masticatory function and mandibular morphology in major catarrhine clades. To extend the implications of previous work on variation in mandibular form and function in other primates, a scaling analysis was performed on 20 extinct and 7 living non-cercopithecoid catarrhines or 'dental apes'. Results of allometric comparisons indicate that for a given jaw length, larger apes exhibit significantly more robust corpora and symphyses than smaller forms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!