Despite being among the most common oncogenes in human cancer, to date, there are no effective clinical options for inhibiting KRAS activity. We investigated whether systemically delivered KRAS siRNAs have therapeutic potential in KRAS-mutated cancer models. We identified KRAS siRNA sequences with notable potency in knocking down KRAS expression. Using lung and colon adenocarcinoma cell lines, we assessed antiproliferative effects of KRAS silencing in vitro. For in vivo experiments, we used a nanoliposomal delivery platform, DOPC, for systemic delivery of siRNAs. Various lung and colon cancer models were used to determine efficacy of systemic KRAS siRNA based on tumor growth, development of metastasis, and downstream signaling. KRAS siRNA sequences induced >90% knockdown of KRAS expression, significantly reducing viability in mutant cell lines. In the lung cancer model, KRAS siRNA treatment demonstrated significant reductions in primary tumor growth and distant metastatic disease, while the addition of CDDP was not additive. Significant reductions in Ki-67 indices were seen in all treatment groups, whereas significant increases in caspase-3 activity were only seen in the CDDP treatment groups. In the colon cancer model, KRAS siRNA reduced tumor KRAS and pERK expression. KRAS siRNAs significantly reduced HCP1 subcutaneous tumor growth, as well as outgrowth of liver metastases. Our studies demonstrate a proof-of-concept approach to therapeutic KRAS targeting using nanoparticle delivery of siRNA. This study highlights the potential translational impact of therapeutic RNA interference, which may have broad applications in oncology, especially for traditional "undruggable" targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416486 | PMC |
http://dx.doi.org/10.1158/1535-7163.MCT-14-0074 | DOI Listing |
J Gastrointest Cancer
January 2025
Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
Purpose: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with limited therapeutic options and poor prognosis. Recent advances in targeted therapies have opened new avenues for intervention in PDAC, focusing on key genetic and molecular pathways that drive tumor progression.
Methods: In this review, we provide an overview on advances in novel targeted therapies in pancreatic adenocarcinoma.
Mol Cell Biochem
November 2024
Kindai University Faculty of Pharmacy, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
Oxaliplatin (L-OHP) and 5-fluorouracil (5-FU) are used to treat colon cancer; however, resistance contributes to poor prognosis. Epithelial-mesenchymal transition (EMT) has been induced in tumor tissues after administration of anticancer drugs and may be involved in drug resistance. We investigated the mechanism of EMT induction in colon cancer cells treated with 5-FU and L-OHP.
View Article and Find Full Text PDFPeerJ
November 2024
Vocational High School of Health Care Services, Department of Medical Services and Techniques, Kırıkkale University, Kırıkkale, Yahşihan, Turkey.
Cancers (Basel)
October 2024
Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
Oncogenic mutations in the gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional coactivator required for transformation by the RAS oncogenes and the development of PC.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan.
This study investigated the correlation of Apolipoprotein-B mRNA-editing complex 3B (APOBEC3B) expression with hypoxia inducible factor 1α (HIF-1α), Kirsten rat sarcoma virus (KRAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in endometriosis patients, and the inhibitory effects of APOBEC3B knockdown in a human endometriotic cell line. Here, APOBEC3B, HIF-1α, KRAS, and PIK3CA were examined in patients with and without endometriosis using reverse transcription polymerase chain reaction (RT-PCR). The apoptosis, cell proliferation, invasion, migration, and biological function of APOBEC3B knockdown were explored in 12Z immortalized human endometriotic cell line.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!