The prevalence of sleep apnea is very high in patients with heart failure (HF). The aims of this study were to investigate the influence of intermittent hypoxia (IH) on the failing heart and to evaluate the antioxidant effect of hydrogen gas. Normal male Syrian hamsters (n = 22) and cardiomyopathic (CM) hamsters (n = 33) were exposed to IH (repeated cycles of 1.5 min of 5% oxygen and 5 min of 21% oxygen for 8 h during the daytime) or normoxia for 14 days. Hydrogen gas (3.05 vol/100 vol) was inhaled by some CM hamsters during hypoxia. IH increased the ratio of early diastolic mitral inflow velocity to mitral annulus velocity (E/e', 21.8 vs. 16.9) but did not affect the LV ejection fraction (EF) in normal Syrian hamsters. However, IH increased E/e' (29.4 vs. 21.5) and significantly decreased the EF (37.2 vs. 47.2%) in CM hamsters. IH also increased the cardiomyocyte cross-sectional area (672 vs. 443 μm(2)) and interstitial fibrosis (29.9 vs. 9.6%), along with elevation of oxidative stress and superoxide production in the left ventricular (LV) myocardium. Furthermore, IH significantly increased the expression of brain natriuretic peptide, β-myosin heavy chain, c-fos, and c-jun mRNA in CM hamsters. Hydrogen gas inhalation significantly decreased both oxidative stress and embryonic gene expression, thus preserving cardiac function in CM hamsters. In conclusion, IH accelerated LV remodeling in CM hamsters, at least partly by increasing oxidative stress in the failing heart. These findings might explain the poor prognosis of patients with HF and sleep apnea.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00228.2014DOI Listing

Publication Analysis

Top Keywords

hydrogen gas
16
oxidative stress
12
hamsters
9
embryonic gene
8
gene expression
8
left ventricular
8
intermittent hypoxia
8
cardiomyopathic hamsters
8
sleep apnea
8
failing heart
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!