A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Clinical interpretation of CNVs with cross-species phenotype data. | LitMetric

Background: Clinical evaluation of CNVs identified via techniques such as array comparative genome hybridisation (aCGH) involves the inspection of lists of known and unknown duplications and deletions with the goal of distinguishing pathogenic from benign CNVs. A key step in this process is the comparison of the individual's phenotypic abnormalities with those associated with Mendelian disorders of the genes affected by the CNV. However, because often there is not much known about these human genes, an additional source of data that could be used is model organism phenotype data. Currently, almost 6000 genes in mouse and zebrafish are, when knocked out, associated with a phenotype in the model organism, but no disease is known to be caused by mutations in the human ortholog. Yet, searching model organism databases and comparing model organism phenotypes with patient phenotypes for identifying novel disease genes and medical evaluation of CNVs is hindered by the difficulty in integrating phenotype information across species and the lack of appropriate software tools.

Methods: Here, we present an integrated ranking scheme based on phenotypic matching, degree of overlap with known benign or pathogenic CNVs and the haploinsufficiency score for the prioritisation of CNVs responsible for a patient's clinical findings.

Results: We show that this scheme leads to significant improvements compared with rankings that do not exploit phenotypic information. We provide a software tool called PhenogramViz, which supports phenotype-driven interpretation of aCGH findings based on multiple data sources, including the integrated cross-species phenotype ontology Uberpheno, in order to visualise gene-to-phenotype relations.

Conclusions: Integrating and visualising cross-species phenotype information on the affected genes may help in routine diagnostics of CNVs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501634PMC
http://dx.doi.org/10.1136/jmedgenet-2014-102633DOI Listing

Publication Analysis

Top Keywords

model organism
16
cross-species phenotype
12
phenotype data
8
evaluation cnvs
8
cnvs
7
phenotype
6
genes
5
clinical interpretation
4
interpretation cnvs
4
cnvs cross-species
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!