Clostridium acetobutylicum is a model organism for the biotechnologically important acetone-butanol-ethanol (ABE) fermentation. With the objective to rationally develop strains with improved butanol production, detailed insights into the physiological and genetic mechanisms of solvent production are required. Therefore, pH-controlled phosphate-limited chemostat cultivation and DNA microarray technology were employed for an in-depth analysis of knockout mutants with defects in the central fermentative metabolism. The set of studied mutants included strains with inactivated phosphotransacetylase (pta), phosphotransbutyrylase (ptb), and acetoacetate decarboxylase (adc) encoding genes, as well as an adc/pta double knockout mutant. A comprehensive physiological characterization of the mutants was performed by continuous cultivation, allowing for a well-defined separation of acidogenic and solventogenic growth, combined with the advantage of the high reproducibility of steady-state conditions. The ptb-negative strain C. acetobutylicum ptb::int(87) exhibited the most striking metabolite profile: Sizable amounts of butanol (29 ± 1.3 mM) were already produced during acidogenic growth. The product patterns of the mutants as well as accompanying transcriptomic data are presented and discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-014-6040-9 | DOI Listing |
Molecules
December 2024
Unidade de Bioenergia e Biorrefinarias, LNEG-Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal.
Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer.
View Article and Find Full Text PDFFront Microbiol
October 2024
Department of Biotechnology, Delft University of Technology, Delft, Netherlands.
The thermoalkaliphile possesses a highly branched respiratory chain. These primarily facilitate growth at a wide range of dissolved oxygen levels. The aim of this study was to investigate the regulation of respiratory chain.
View Article and Find Full Text PDFSTAR Protoc
December 2024
Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; TUMCREATE, 1 CREATE Way, #10-02 CREATE Tower, Singapore 138602, Singapore; ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany. Electronic address:
Chemostat systems can be used to cultivate complex intestinal microbial communities ex vivo. Here, we present a protocol to transfer bacteria from human fecal material into chemostat systems as well as settings to simulate infant or adult colonic conditions. We describe the experimental setup, media design, donor selection, 16S rRNA amplicon sequencing, and circadian analysis of bacterial abundance.
View Article and Find Full Text PDFFront Microbiol
October 2024
Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.
Overflow metabolism is a well-known phenomenon that describes the seemingly wasteful and incomplete substrate oxidation by aerobic cells, such as yeasts, bacteria, and mammalian cells, even when conditions allow for total combustion via respiration. This cellular response, triggered by an excess of C-source, has not yet been investigated in archaea. In this study, we conducted chemostat cultivations to compare the metabolic and physiological states of the thermoacidophilic archaeon under three conditions, each with gradually increasing nutrient stress.
View Article and Find Full Text PDFEnviron Microbiol Rep
August 2024
Department of Earth, Energy, and Environment, University of Calgary, Calgary, Alberta, Canada.
Cyanobacteria have many biotechnological applications. Increasing their cultivation pH can assist in capturing carbon dioxide and avoiding invasion by other organisms. However, alkaline media may have adverse effects on cyanobacteria, such as reducing the Carbon-Concentrating Mechanism's efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!