Although hydrophilic small molecule drugs are widely used in the clinic, their rapid clearance, suboptimal biodistribution, low intracellular absorption and toxicity can limit their therapeutic efficacy. These drawbacks can potentially be overcome by loading the drug into delivery systems, particularly liposomes; however, low encapsulation efficiency usually results. Many strategies are available to improve both the drug encapsulation efficiency and delivery to the target site to reduce side effects. For encapsulation, passive and active strategies are available. Passive strategies encompass the proper selection of the composition of the formulation, zeta potential, particle size and preparation method. Moreover, many weak acids and bases, such as doxorubicin, can be actively loaded with high efficiency. It is highly desirable that once the drug is encapsulated, it should be released preferentially at the target site, resulting in an optimal therapeutic effect devoid of side effects. For this purpose, targeted and triggered delivery approaches are available. The rapidly increasing knowledge of the many overexpressed biochemical makers in pathological sites, reviewed herein, has enabled the development of liposomes decorated with ligands for cell-surface receptors and active delivery. Furthermore, many liposomal formulations have been designed to actively release their content in response to specific stimuli, such as a pH decrease, heat, external alternating magnetic field, ultrasound or light. More than half a century after the discovery of liposomes, some hydrophilic small molecule drugs loaded in liposomes with high encapsulation efficiency are available on the market. However, targeted liposomes or formulations able to deliver the drug after a stimulus are not yet a reality in the clinic and are still awaited.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2014.09.029 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces (CPI), Albert Ludwigs Universität Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany.
Glaucoma, a leading cause of blindness, demands innovative and effective treatments that surpass the limitations of current drug and surgical interventions to lower intraocular pressure. This study describes the generation of cell-repellent hydrogel patches, their deposition on the ocular surface, and a photoinduced chemical binding between the patches and the collagens of the eye. The hydrophilic and protein-repellent hydrogel patch is composed of a copolymer made from dimethylacrylamide and a comonomer unit with anthraquinone moieties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
The aging population necessitates a critical need for medical devices, where polymers-based surface lubrication coating is essential for optimal functionality. In fact, lubrication and mechanical requirements vary depending on the service environment of different medical devices. Until now, key mean is still blank for general preparation of hydrophilic polymers-based lubrication coatings with on-demand mechanics and lubricity.
View Article and Find Full Text PDFLangmuir
January 2025
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
Catechol-derived polymers form stable coatings on a wide range of materials including challenging to coat low surface energy polymers. Whether modification of the coating polymer with fluorophilic or hydrophobic groups is a successful approach to further favor the coating of hydrophobic or fluorophilic surfaces with catechol-based polymers remains ambiguous. Herein, we report the effect of a series of catechol-derived polyglycerol (PG)-based coatings and monolayer coatings on the wettability of polytetrafluoroethylene (PTFE), polystyrene, and poly(methyl methacrylate) surfaces.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom.
The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq.
View Article and Find Full Text PDFRSC Med Chem
January 2025
Department of Chemistry, The State University of New York at Buffalo Natural Sciences Complex Buffalo NY 14260 USA
Small molecules targeting activating mutations within the epidermal growth factor receptor (EGFR) are efficacious anticancer agents, particularly in non-small cell lung cancer (NSCLC). Among these, lazertinib, a third-generation tyrosine kinase inhibitor (TKI), has recently gained FDA approval for use in combination with amivantamab, a dual EGFR/MET-targeting monoclonal antibody. This review delves into the discovery and development of lazertinib underscoring the improvements in medicinal chemistry properties, especially in comparison with osimertinib.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!