A rarely used hydroponic plant root mat filter (PRMF, of 6 m(2)) and a horizontal subsurface flow constructed wetland (HSSF CW, of 6 m(2)), operating in continuous flow and discontinuous outflow flushing modes, were investigated for treating sulfate-rich and organic carbon-lean groundwater contaminated with monochlorobenzene (MCB); 1,2-dichlorobenzene (1,2-DCB); 1,4-dichlorobenzene (1,4-DCB); and 2-chlorotoluene. Whereas the mean inflow loads ranged from 1 to 247 mg m(-2) days(-1), the range of mean inflow concentrations of the chlorobenzenes recorded over a period of 7 months was within 0.04 and 8 mg L(-1). A hydraulic surface loading rate of 30 L m(-2) days(-1) was obtained in both systems. The mean load removal efficiencies were found to vary between 87 and 93 % in the PRMF after a flow path of 4 m, while the removal efficiencies were found to range between 46 and 70 % and 71 to 73 % in the HSSF CW operating in a continuous flow mode and a discontinuous outflow flushing mode, respectively. Seasonal variations in the removal efficiencies were observed for all low-chlorinated hydrocarbons both in the PRMF and the HSSF CW, whereby the highest removal efficiencies were reached during the summer months. Sulfide formation occurred in the organic carbon-lean groundwater particularly in summer, which is probably due to the plant-derived organic carbon that fostered the microbial dissimilatory sulfate reduction. Higher redox potential in water was observed in the PRMF. In conclusion, the PRMF could be an option for the treatment of water contaminated with compounds which in particular need oxic conditions for their microbial degradation, such as in the case of low-chlorinated benzenes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-014-3618-9DOI Listing

Publication Analysis

Top Keywords

removal efficiencies
16
low-chlorinated benzenes
8
constructed wetland
8
hydroponic plant
8
plant root
8
root mat
8
treating sulfate-rich
8
hssf operating
8
operating continuous
8
continuous flow
8

Similar Publications

Simulation of fluid flow with Cuprophan and AN69ST membranes in the dialyzer during hemodialysis.

Biomed Phys Eng Express

January 2025

Ingeniería y Tecnología, Universidad Nacional Autonoma de Mexico Facultad de Estudios Superiores Cuautitlan, Av. 1o de Mayo S/N, Santa María las Torres, Campo Uno, 54740 Cuautitlán Izcalli, Edo. de Méx., Cuautitlan Izcalli, Estado de México, 54740, MEXICO.

Hemodialysis is a crucial procedure for removing toxins and waste from the body when kidneys fail to perform this function effectively. This study addresses the need to improve the efficiency and biocompatibility of membranes used in dialyzers. We simulate fluid flow through two types of membranes, Cuprophan (cellulosic) and AN69ST (synthetic), to understand the complex mechanisms involved and quantify key variables such as pressure, concentration, and flow.

View Article and Find Full Text PDF

The acid mine drainage (AMD) is characterized by its highly acidic nature and elevated concentrations of metal ions, thereby exerting significant impacts on both human health and the environment. This study employed a dispersed alkaline substrate (DAS) consisting of thermal activation magnesite and pine shavings for the treatment of AMD. The investigation focused on determining the optimal thermal activation conditions of magnesite, evaluating the effectiveness of the DAS in regulating acidity and removing metal ions from AMD, identifying critical factors influencing treatment efficiency, and conducting toxicity assessment on the effluent.

View Article and Find Full Text PDF

It has long been hypothesized that episodic memory supports adaptive decision making by enabling mental simulation of future events. Yet, attempts to characterize this process are surprisingly rare. On one hand, memory research is often carried out in settings that are far removed from ecological contexts of decision making.

View Article and Find Full Text PDF

We have demonstrated that the cellular protein M-Sec promotes the transmission of human T-cell leukemia virus type 1 (HTLV-1) in vitro and in vivo. Here, we show how HTLV-1 utilizes M-Sec for its efficient transmission. HTLV-1-infected CD4+ T cells expressed M-Sec at a higher level than uninfected CD4+ T cells.

View Article and Find Full Text PDF

Microbes as Resources to Remove PPCPs and Improve Water Quality.

Microb Biotechnol

January 2025

Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland.

The inadequate removal of pharmaceuticals and personal care products (PPCPs) by traditional wastewater treatment plants (WWTPs) poses a significant environmental and public health challenge. Residual PPCPs find their way into aquatic ecosystems, leading to bioaccumulation in aquatic biota, the dissemination of antibiotic resistance genes (ARGs), and contamination of both water sources and vegetables. These persistent pollutants can have negative effects on human health, ranging from antibiotic resistance development to endocrine disruption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!