Macrocycles such as porphyrins and corroles have important functions in chemistry and biology, including light absorption for photosynthesis. Generation of near-IR (NIR)-absorbing dyes based on metal complexes of these macrocycles for mimicking natural photosynthesis still remains a challenging task. Herein, the syntheses of four new Ag(III) corrolato complexes with differently substituted corrolato ligands are presented. A combination of structural, electrochemical, UV/Vis/NIR-EPR spectroelectrochemical, and DFT studies was used to decipher the geometric and electronic properties of these complexes in their various redox states. This combined approach established the neutral compounds as stable Ag(III) complexes, and the one-electron reduced species of all the compounds as unusual, stable Ag(II) complexes. The one-electron oxidized forms of two of the complexes display absorptions in the NIR region, and thus they are rare examples of mononuclear complexes of corroles that absorb in the NIR region. The appearance of this NIR band, which has mixed intraligand charge transfer/intraligand character, is strongly dependent on the substituents of the corrole rings. Hence, the present work revolves round the design principles for the generation of corrole-based NIR-absorbing dyes and shows the potential of corroles for stabilizing unusual metal oxidation states. These findings thus further contribute to the generation of functional metal complexes based on such macrocyclic ligands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201403609 | DOI Listing |
Curr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
Background: Scedosporium apiospermum is a multidrug-resistant filamentous fungus that causes localized and disseminated diseases. Our group has previously described that metalbased complexes containing copper(II) or silver(I) ions complexed with 1,10-phenanthroline-5,6- dione (phendione) inhibited the viability of S. apiospermum conidial cells.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey.
Background: Psychosis, marked by detachment from reality, includes symptoms like hallucinations and delusions. Traditional herbal remedies like kratom are gaining attention for psychiatric conditions. This was aimed at comprehending the molecular mechanisms of Kratom's antipsychotic effects utilizing a multi-modal computational approach.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, 700114, India.
Immune checkpoint blockade (ICB) has fundamentally transformed cancer treat-ment by unlocking the potency of CD8+ T cells by targeting the suppression of the CTLA-4 and PD-1/PD-L1 pathways. Nevertheless, ICBs are associated with the risk of severe side effects and resistance in certain patients, driving the search for novel and safer immune check-point modulators. Monoamine Oxidase A (MAO-A) plays an unexpected role in the field of cancer.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
Department of Pharmacology, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to-be University, Shirpur - 425405, India.
The world's one of the major causes of death are cancer. Cancer is still a complex disease over the years that needs to be cured. Traditional cytotoxic approaches, although they have been implemented for years for treating neoplastic diseases, yet are limited due to the intricacy and low efficiency of cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!