Photocatalysis provides a cost effective method for both renewable energy synthesis and environmental purification. Photocatalytic activity is dominated by the material design strategy and synthesis methods. Here, for the first time, we report very mild and effective photo-deposition procedures for the synthesis of novel Fe2 O3 -TiO2 nanocomposites. Their photocatalytic activities have been found to be dramatically enhanced for both contaminant decomposition and photoelectrochemical water splitting. When used to decompose a model contaminant herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), monitored by both UV/Vis and total organic carbon (TOC) analysis, 10% Fe-TiO2 -H2 O displayed a remarkable enhancement of more than 200 % in the kinetics of complete mineralisation in comparison to the commercial material P25 TiO2 photocatalyst. Furthermore, the photocurrent is nearly double that of P25. The mechanism for this improvement in activity was determined using density functional theory (DFT) and photoluminescence. These approaches ultimately reveal that the photoelectron transfer is from TiO2 to Fe2 O3 . This favours O2 reduction which is the rate-determining step in photocatalytic environmental purification. This in situ charge separation also allows for facile migration of holes from the valence band of TiO2 to the surface for the expected oxidation reactions, leading to higher photocurrent and better photocatalytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201403489DOI Listing

Publication Analysis

Top Keywords

photocatalytic activity
12
fe2 -tio2
8
-tio2 nanocomposites
8
charge separation
8
environmental purification
8
photocatalytic
5
nanocomposites enhanced
4
enhanced charge
4
separation photocatalytic
4
activity
4

Similar Publications

Understanding the interplay between gasotransmitters is essential for unlocking their therapeutic potential. However, achieving spatiotemporally controlled co-delivery to target cells remains a significant challenge. Herein, we propose an innovative strategy for the intracellular co-delivery of carbon monoxide (CO) and nitric oxide (NO) gasotransmitters under clinically relevant wavelengths.

View Article and Find Full Text PDF

Conjugated polymers, represented by polymeric carbon nitrides (PCNs), have risen to prominence as new-generation photocatalysts for overall water splitting (OWS). Despite considerable efforts, achieving highly crystalline PCNs with minimal structural defects remains a great challenge, and it is also difficult to examine the exact impact of complex defect states on OWS process, which largely limits their quantum efficiency. Herein, we devise a 'in-situ salt flux' assisted copolymerization protocol by using nitrogen-rich and nitrogen-deficient monomers to precisely manipulate the structural defects of poly (triazine imide) (PTI) single crystals.

View Article and Find Full Text PDF

Isomer-Effects of Aminophenol Decorated Gold Nanoclusters for HO Photoproduction via Two-Step One-Electron Oxygen Reduction Reaction.

Small

January 2025

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.

Gold (Au) nanoclustersare promising photocatalysts for biomedicine, sensing, and environmental remediation. However, the short carrier lifetime, inherent instability, and unclear charge transfer mechanism hinder their application. Herein, the Au nanoclusters decorated with three different isomers of o-Aminophenol, m-Aminophenol, and p-Aminophenol are synthesized, namely o-Au, m-Au, and p-Au, which achieve efficient hydrogen peroxide (HO) photoproduction through two-step one-electron oxygen reduction reaction (ORR).

View Article and Find Full Text PDF

Designing and realizing new topologies represent one of the most important ways toward developing new structures and functionalities for molecule-based frameworks including SOFs, MOFs, and COFs. Herein, Aldol condensation between 5,10,15,20-tetrayl(tetrakis(([1,1':3',1''-terphenyl]-4,4''-dicarbaldehyde)))-porphyrin (TTEP) and 2,4,6-trimethyl-1,3,5-triazine (TMT) affords the vinylene-linked 3D covalent organic framework Por-COF-cya. Powder X-ray diffraction (PXRD) in combination with structural simulation reveals its high crystalline structure with an unprecedented cya topology in the molecule-based frameworks reported thus far.

View Article and Find Full Text PDF

Photoassisted CO reduction employing a metal-free system is both challenging and fascinating. In our study, we present a structural engineering strategy to tune the potential energy barrier, which, in turn, affects the photoreduction ability. A series of porphyrin-based porous organic polymers () were hydrothermally synthesized and the influence of keto-enol tautomerization on the CO photoreduction potential has been rigorously investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!