The synthesis of a trisheteroleptic ruthenium complex [Ru(tb)(dppz)(tmbiH2 )][PF6 ]2 (tb=4,4'-di-tert-butyl-2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazin, tmbiH2 =5,6,5',6'-tetramethyl-2,2'-bibenzimidazole) is described. In addition, the structural characterisation by means of 1D, 2D (1) H NMR spectroscopy, and mass spectrometry, along with determination of the solid-state structure of the important precursor Ru(tb)(dppz)Cl2 , supports the proposed octahedral coordination geometry. The capability of tmbiH2 to form hydrogen bonds is corroborated by the solid-state structure. The photochemical characteristics of this complex can be described as a combination of the "light switch" effects, which are either attributed to the dppz or to the tmbiH2 ligand. To illustrate the molecule's double switchable features, steady-state absorption and emission measurements were performed, which include the determination of the quantum yield and the pKa values of the acidic protons of the tmbiH2 ligand. Notably, the emission lifetimes are sensitive to the solvents used. This phenomenon is due to a proton-coupled deactivation of the excited metal-to-ligand charge transfer (MLCT) state of the complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201403418 | DOI Listing |
Pharmaceutics
November 2024
School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
: To improve the solubility and permeability of Sparfloxacin (SPX) and enhance its antimicrobial activity in vitro, two unreported pharmaceutical crystalline salts were synthesized and characterized in this paper. One is a hydrated crystal of Sparfloxacin with Pimelic acid (PIA), another is a hydrated crystal of Sparfloxacin with Azelaic acid (AZA), namely, SPX-PIA-HO (2CHFNO·CHO·2HO) and SPX-AZA-HO (4CHFNO·2CHO·5HO). : The structure and purity of two crystalline salts were analyzed using solid-state characterization methods such as single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and infrared spectroscopy.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland.
Photocurable materials offer a rapid transition from a liquid to a solid state, and have recently received great interest in the medical field. However, while dental resins are very popular, only a few materials have been developed for soft tissue repair. This study aims to synthesize a difunctional methacrylate monomer using a dibutyltin dilaurate which is suitable for the photocuring of soft materials.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Nuclear Physics Institute of CAS, v.v.i., Husinec-Řež 130, 250 68 Řež, Czech Republic.
Two-dimensional molybdenum disulfide (MoS) exhibits interesting properties for applications in micro and nano-electronics. The key point for sensing properties of a device is the quality of the material's surface. In this study, MoS layers were deposited on polymers by pulsed laser deposition (PLD).
View Article and Find Full Text PDFMolecules
December 2024
Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague, Czech Republic.
Apremilast (APR) is an anti-inflammatory drug commonly used in the treatment of psoriasis. In efforts to enhance its solubility, several cocrystals with similar structural features have been developed. This study investigates the cocrystallization of APR with four phenolic-type coformers: phenol, catechol, pyrogallol, and hydroxyquinol.
View Article and Find Full Text PDFMolecules
December 2024
Inner Mongolia Key Lab of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.
In the era of artificial intelligence and Internet of Things, data storage has an important impact on the future development direction of data analysis. Resistive random-access memory (RRAM) devices are the research hotspot in the era of artificial intelligence and Internet of Things. Perovskite-type rare-earth metal oxides are common functional materials and considered promising candidates for RRAM devices because their interesting electronic properties depend on the interaction between oxygen ions, transition metals, and rare-earth metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!